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Ahstract

An approach for fransforming the order of magnitude relation hetween two vadables into an algebraic equality
or inequality constraint is provided. In order ta derive the order of magnitude relation between any twa variables,
z nonlinear optimization problem 75 salved for the minimum and maxisum values of the ratio between the two
varinhles, subject to two classes of constratnts, The first ¢lass of constraints correspoads (o the quantitative model
and the seeend class of constralats corresponds 1o the qualitetive model. The optivtization approach is shown to
prowide more precise inforences as compared to the conventional constraint sarisfaction approaches. Morcover,
this approach provides a crueial siep in developing unified frameworks that allow the incorporation of auali-
tative infarmation ac various levels of abstraction into numedcal Mramewnorks wsed for resoning with quanti-

fative modeols.
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1. INTRODUCTION

Design and analysis af engineering systems or devices is
based on both quaniitative and qualitative information.
Chuantitative information is based on the first principles
af the science that underlie physical processes and are de-
scribied in lerms of systemns of eguations parameterized
by physical canstants. For example, chemical processes
are described in terms of rate equations and various ther-
modynamic correlations. Usuaily the physical constants
that appear in these equations are known with great nu-
merical accuracy, In general, a wide variety of numer-
cal techniques are used for making inferences with such
quantitative information,

O the other hand, gualitative information is of a heu-
rixtle nature and is largely informed by prior experience
and expert judgment regarding the choices that lead to
acceptahle auteomes. Such informatien is characterized
by Banlean lagic or by alpcbraic equations with partial
knowledge such as signs of quantities, relative orders of
magnitude of quantities, and interval values for quanti-
ties, The last decade has seen muoch effart toward devel-
oping mathematical representations for such gualitative
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information using varions farms of multivalued logics.
Computationally, Baolean logical inference is based on
resalution theorem proving. Representations for order of
magmitude relations are similar t¢ multivalved logics, and
constraint satisfrction approaches such as assuthption-
hased truth maintenance systems (ATME) are used far
inference.

The ability to integrate both quantitative and qualita-
tive knowledge in a commaon ramework is desirable since
it would allow us ta bring knowledge from both first prin-
ciples and cxperience to the problem at hand. Scme work
has been done toward integrating qualitative knowledge
expressed in Boolean logic with quantitative infarmation
expressed in terms of linear constraints, The Boolsan lagic
is transformed into a set of mathematical expressions using
integer arithmetic and combined with the linear constraints
in a mixed integer linear programming frameweork. How-
ever, in many engineering problems the qualitative in-
formation is in terms of relative orders of magnitude or
intervals, and thers does not exist a methodological ap-
proach to integrate such information with general quan-
titative models expressed in terms of linear/nonlinear
constraints.

In this article we develop an approach for integrating
gualitative order of magnitude information with quan-
trative information expressed as finear/nionlinear con-
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straints in 7 unified nentinear programming framework.
The order of magnitude relation between auy two vari-
ables is transformed into an equality constraint by infro-
ducing a variable ¥ that is the ratio of the two variables,
Based on the arder of magnitude refation, the upper and
lawer boundaries for the ratio r are specified. In order 1o
derive the order of magnitude relation befween any two
variables, a nonlinear optimization probiem far the min-
imum and maximum values of the ratia of these two varl-
ables is solved, siubject to two classes of constraines. The
first class of constraints correspends to the quantitative
model and is derived from the first principles that under-
lie tlie process under cansideratfon, and the second class
of constraints cotrresponds to the qualitative moded that
is derived from heuristic knowledge.

The rest of the article is organized as follows, Scetion 2
pravides an overview of the various mathematical repre-
septations that have heen devetaped in the qualitative rea-
suning literature for expressing partial information such
a5 signs of guantities and arder of magnitude informa-
tan. A brief description of the integrating framework for
Boolean logic with linear constraints is also pravided. Sec-
tion 3 describes an approach we have developed to trans-
(orm order of magnitude relations into a set of equality
and inequality constraints, These constraines along with
the guantitative information are then used in an oprimi-
zation Framework to derive order of magnitude relations
ketwoeh variables of interest, Scction 4 presents three ex-
amples to illustrate chis approach. Two of the examples
are borrowed fram the qualitative reasoning literature,
and a new example that uses notions fram qualitalive sta-
bility is introduced. The optimization approach is shawn
to provide more precise inferences as compared o the
conventional approaches for order of magnitude reasan-
ing. Section 5 presants a discussion on the implications af
this work. Some thoughts regarding how to integrate qual-
itative information of all forms (Boolean logie and order
of magnitude relations) with quantitative information
using a mixed integer nonlinear programmming framewark
{MINLP} are presented. Section 6 presents conclusions of
this work.

2. PREVIOUS WORK

In enginecting applications, qualitative infarmation at
various levels of detail are encountered. Boolean med-
els are often vsed to express (he exisience of CONSITAITIES
between relevant variables, For example, Boolean maod-
els are commenly used in fault diagnosis applications,
especially in the context of digital circuits to deseribe
cause—effect relations berween variables/components of
a physical device, Such maodels are uselul for the genera-
tion of hypotheses that explain abserved malfunctions
{Hamscher, 19913, Several examples of the use of neop-
ositional logic in pracess synthesis in chemical engineering
are provided by Reman and Grossman (19313, However,
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in a large class of enzineering problems that deal with con-
tinuous process variables, more detailed informaticn such
as sipns of variables and the direction in which each vari-
ahic affects another is also available. For example, fault
simulation of helicopter engines (Subrahmanian et al.,
1988, space shuitle main engine (Hoffman et al., 1992},
and Fault simulation in process engimeering applications
fOvyeleye & Kramer, 1987; Venkatasubrahmanian & Rich,
1987; Ulerich, 1990} use qualitative models at this level
of detail, With the development of formalisms for rep-
resenting and reasoning with order ol magnitude refa-
tians, Fault simulation models that use marc detailed
information about the rough magnitude of parameters
and relative size of variahles have been developed (Dague
et gl., 1987). Order of magnitude formalisms have also
heen used for reasoning ahout the qualitative stability of
stationary states in the startup of process planis (Aclion
et al., 1992).

Various qualitative algebras for representing informa-
tinn at varying [evels of detail have heen developed in the
last decade in the Al literature. The eatliest and perhaps
the most commen is besed on the algebra of signs called
confluences (de Kleer & Brow, 1984), It consists of sign
addition, subtraction, and qualitative equality. Qe of the
main shorteomings of this algebra is the problem af am-
biguity ¢{Struss, 1990). A number of efforts have been
made to strenpthen sign algebras by introducing a finite
set of landmarks (Forbes, 1984, Kuipers, 1987). Hawever,
5 finite set of landroarks is not sufficient to overcome the
ambiguity of addition and the lack of an additive imverse
{Struss, 1990). Moreaver, m real situations mote detailed
information, such as arder of magnitude relations, is pvail-
able and it is desirable ta develop and use algebras that ex-
ploit this information. Mare recently, qualitative algebras
that capture order of magnitude relatiens have been de-
veloped {Raiman, 1986, hMavrovouniotis & Stephano-
poulos, 1987; Raiman, 1991, Dagoe, 1991a), The order
of magnitude formalism O(M) provided by Mavrovou-
niotis & Stephanopoules (1987) overcomes some of the
shortcomings of the earlier gpproach (Raimarn, 1986} and
allows striet (mathematically sound) as well as heuristic
interpretations for order of magnitude relations. Flow-
ever, the use of heuristic interpretation leads to invalid
conclusions after the first infarence step. Dague (1993h)
has developed a formalism ROM (K} where each order of
magnitude relation is represented by two overlapping in-
tervals with different boundaries. This allows a formal
treatment af the hetristic interpretation of order of mag-
nitude refations and provides a sound calenlus for tulti-
ple inference stops.

Thers is a growing effort in the AT literature Lo develop
hybrid qualitative /quantitative algebras that allow the in-
tegration of numerie inforrmation into symbelic algebras
iDaguc, 1993b; Williams, 1991; Forbus & Falkenhainer,

1990: Betleant & Kuipers, 1930, In the Alliterature, the
information at different levels of resolution is preseeved
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and the hybrid approaches are focussed an finding ways
of scaling wp and down these abstraction lavels, The nu-
meric information s penerally used o resolve ambiguitics
that arise in qualitative algebras. An alternative approach
1o integrating qualitative and quantitative models involves
transforming the qualitative relations into a quantitative
framework and using numeric metheds for reasoning with
the integrated information. Raman and Grossman f1941)
have develaped such an approach far transforming qual-
itative knowledge expressed in propositional logie into
algchraic constraints between integer variables rhat are
thetl combined with other guantitative constraints be-
tween continuous variables in a mixed integer Hnear pro-
gramming framework. Dague (1993h) has developed an
approach for transforming order of magnitide relations
into the real domain. In the real domain, the erder of
magnitude relations are expressed by intervals, and the
hounds of the intervals are propagated using numeric can-
sisteney technicues {Lhomme, 1993). In this acticie, all
of the order of magnitude itnformation at various [evels
aof tesolution are converted inta equality and inequality
constraints between continuads variables. Subsequently,
the order of magnitude relation betweaen any pairs af
variables is determined by solving for the minimum and
maximum of the interval using a constrained nonlinear
optimization appreach. This optimization approach [
arder of magnitude reasoning is novel compared with the
other approaches developed so far. We illustrate with ex-
amples that this approach provides more accurate results
as compared to other approaches.

3. OPTIMIZATION APPROACH

The optimization approach consists of first transforming
the order of magnitude refations inta a set ol algebraic
constrajnts and then sehving an optimizatian probiem for
inference. However, in order to describe this approach it
{5 first TecEssary 10 choose & TUITIHE Sysiem that -Fefinos
the syniax and the semantics for representing and reason-
ing with relative order of magnitude relations. The two
main considerations for choosing a formalism are that
it should provide an intuitive reprasettation and should
nllew for sound and exact inferences. Two candidates
are the QM) formatism suggested by Mavrovou niotis and
Stephanopotlos (1988) and the ROM (X formalism sug-
gested by Dague (19934), For purposes of illustrating the
optimization approach we have chosen the O{M) formal-
iam. The strict interpretation of O(M) provides exacl in-
ferences, and we find that the O{M) refations are simpler
and more intuitive as compared to the ROM(K) represen-
tation. However, the approach that we present here can
be used with the ROM({K} [armalism in a similar fashion,
In this section we explicate haw the Q(M) relations can
be trapsformed into algebraie constraings bebween COTkifi-
uous variables and provide an optimization formulation

0%

Far inferring the order of magnitude relations herween
varjables of imterast.

The O(M) Farmalism proposed by Mavrovetniotis and
Stephanopoulos (1988) is based on seven primitive rela-
tians between variables, which are shown in Table 1. Each
relation 15 also deseribed by a variable r;, which is the
atio of the two variables X /X, The variable r, is con-
strained to an interval based on the O(M) relarion, for
exatnple, X, is much smaller than X3 signifies the interval
{0, e} for r;. Nete that the O(M) relations relate absa-
lute quaniities without reference to their sign. Compound
relations are represented by concatenating the primitive
relations so that X is less than X718 represented by X <<
e X, ie., X is much smaller to slightly smaller
than X;. There are in total 21 campaund relations that
can be represented by additional relations r;, =1, ., W
F=i+1,...,7. O(M) sanctions symmetry lpatween vari-
ables and the intuition that for Xy, X3 >0 &) — Ay =
X, = X, = Xi. This leaves only one degree of freedom
called the talerance parameter e for delining the intervals
for r;. The intervals for r, #= 1. .., 7 in terms of the pa-
ramneter e are provided in Figure 1{a}. In arder ta alkow
the inference X, = X, from X, = X, Ao > X5, & heuris-
tic interpretation is adopted that replaces the nenoverlap-
ping intervals in Figure 1{a} with averlapping intervals
with fuzzy boundaries as shown in Figure 1{b}, Bath the
relations {to the right and left) are valid in the fuzzy
houndaries between intervals, In Table 2 we provide no-
merical values far the boundaries for differcnt values of
. This rabulation is useful for the interpretation of the
numetical results derived in examples.

We are now ready ta formulate the optimization prab-
lem for reasoning about the relative orders of magnitude
hetween Lwo vatiables. Far any two variables, if the or-
der of imagnirude relation is expressed as a pritaitive QM)
relatian, then it can be transformed guite simply into an
equality constraint using the ratio r;, i = 1,...,7 with
the uppet and lower bounds on 5 specified as shown in
Fable 3, Similarly, any compoeund O(M) relation &,y A
can also be written as an equality comstraint X, X -
r=0,i=1. . j=i+L....7 However, the upper
and lawer bounds have ta be determined as the lower
hound of the smallet relavionship, r;, and the upper

Tahle 1. Frimitive relarions af the OM) formealism

Dny Relations Yerbal Explinatian

I :X| ﬂ*:x:

X, it mock smaller an X
P X =T A X is maderately smalier than Xz
X -, Xy is clighly smaller than X3
Xy ==X\ &, Is cxecily equad 1o X
rai X e K X is slightly Targer tham k)
Fat &) = X is moderately Jarger than X
X, is much larger 1han &5

ro X =
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STRICT INTERPRETATION
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HEURISTIC INTERPRETATION

Flg. L. Sirict and heurissic intecpeelation of raady relations (Mavro-
vounintls & Stephenopoulces, 1938),

bound of the larger relationship, ry. This will beeorme ap-
parent as we solve examples in the next section. Alterna-
tively, the compound relation 7, can also be expressed as
a pair of inequality constraints (as can the primitive re-
latians) r; — X, /X; 20, X 7X; = r; = 0, where the inter-
vals for r, and r; are as shown in Table 3. This form is
more ¢nnvenient for sutomating the optimization for-

Table 1. OM) Boundaries

[ 0.0% .l 4.2
e
e 0.0475 [9091 01607
[ 2
e .05 0.l i)
i
- DO £.B2645 (WATEER
[+ &)
|
— 01,95213 LR 1P Nn.433333
1+e
1 l L 1
148 1.05 1.1 1,2
(1key? 11625 1.3 f.As
1
- 200 100 5.0
£
(1 +el
10 | 1.0 ]

£ R. Katggnanar and LA, Divekar

Table 3. Relational variahlas for npginicaiion
anproach o CfM)

Toerval

oM Relation  Tower Bound, r,  Upper Baund, ry: Canstrainis
X,

el 1 & — = ci
A
1 X

— e — =r.=0
| +& A
| X

—a —— [ — =0
T+ LA
&

=== 1 1 — — =1
Xy
X

= 1 Lo ——— —r_.'=f.l
A
1 X

T L+ - — =ry=0
F Xy
1 X

B - = -_— =1
& X

mulation and has been used for implementation, Now,
in order o derive the order of magnitude relation between
any two variables ¥, ¥a, their ratio pe is expressed in an
equality constraint ¥1/¥: — g = 0. The upper and lower
bounds of the tatio g, will determine the order of mas-
nitnde relation berween the two variables. Ta obtain these
hounds the fallowing optimization prablem is solved for
maximum and minimum of the objective function A

Crotimize Z. = ip,
X
where
X= (X0 X0. 0 X
F= {F Fro-verfnl
subjeet to:

1. Constraints derived from the first principles, which
deseribe the physies of the process:

hxy=1n
giX) =k

7 The relational constraints that deseribe the order of
magnitude telations based on experieniial knowl-
eelge:

h KA =0

£ A X, P =0
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1. The bounds on the decision varianfes X, 7 Note
that the hounds for ¢he variables £ are based on &
strict ingerpretation of the G{M) formalism shown
in Tablc 3.

As stated carlier, since we want to relate the absclute mag-
nitudes of quantities without bothering about their signs,
bath the maximization and minimization problems nse
the square of the ratio [of the twa varigbles whose QM)
relation is desired] as the objective function. The solution
af the serics of maximum//minimum prablems pravides
the upper/lower bounds for the ratios. Onee the intetval
s determined, the order af magnitude relations based on
the (M) formalism [Figure [(b)] can be derived. At this
point ome can use either the strict or the heuristic intet-
pretation to determine the (M) relation. Hawever, if the
results from this analysis are to be used for further anal-
ysis, then it is recommended that the intervals be used
from a sirict intetpretation of G(M) since it preserves the
saundpess of the inferences for multiple steps.

4. EXAMPLES

[u this section we provide three examples to illustrare
the optimization approach for reasoning about order
of magnitude relations. These cxamples involve solution
of noniineat alecbraic equations. Hence, from the apti-
fization perspective the prohlem is poscd as a noalinear
programming (NLF) problem, The recent advanges in
NLP optimization techniques have provided several vid-
ble optimization algorithm options. The most popalar
of these are the generalized reduced gradient {GRG) and
the suceessive quadratic programming {50 P} methods.
Historically, the GRG strategy has been considered to be
the less efficient mode of optimization iBiegler, 1983} for
large-seale optimization problems. Asa result, the SOF
algorithm is used almost routinely for the solution of
large-scale problems {Lang & Biegler, 1087). We have
used the SQP algorithm for the golution of the examples
provided befow hecause this approach can then be easily
axtended to deal with large-size probiems,

Amaongst the three examples, the firsi example invalves
the anafysis of a heat exchanger, and it illustrates haw
the optimization approach provides mofe accurake in-
ferences as caompared (o conventional approaches. The
secand example compares the pesformancs of a contin-
uous stirred tank and a plug flow reactor, and illustrates
the nse of compound relatians. Hoth of these exarmples
ate borrawed from Mavrovouniotis and Stephanopoulos

nat  Thi (7 "y The

FC, KC

T J Ty cold
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{1988}, where they used constraint satisfaction methods
{assumption-based truth maintepance, ATMS) to solve
for relative order of magnitude relations, This provides
an opporiunily to compare the resules nhtainad from the
optimization approach with the constraint satisfaction ap-
proaches. The third example deals with identifying gual-
itatively stable steady states in the context of process plant
startup tAelian et al., 1992) and illustrates the application
of qualitative reasoning to congrel problens.

4.1. Heal exchanger

Figure 2 shows the schemntic of a coumnkercurrent heat
exchanger. The important parametets for the heat ex-
changer simulation are alse shown. The Lot side input
and output temperatures are Ty and T,s, respectively,
Similarly, the T,z and T, denote the cold side input and
QuUEpUL stream temperatures, respectively. The tempera-
ture difference alang the hot side is D7H and along the
cold side it is D7) these can be expressed as:
.DTH=T“-T;,120 ’
DT =T, —Taz=l (1%

The driving forces at the twa cnds af the heat exchang-
ers are given by D71 and D72 and can be calculated
using the following cquatiens:

DTl =T = Ta=0
DT2=Tpp—Taz=0 (2

From the definition of driving ferces and temperature dif-
ferences, the following equation vesults:

DY -DTN —DTC+ BT2=0 (1

Considering the overall heal balance arpund the heat ex-
changer, where FH and FC denote the hot side and cold
side molal Dowrates, and KA and XC are the hot side and
cabd side molal heat capacities, respactively,

FHx KH = DTH =FCx KO = BTC, {41

Mavrovouniotis and Stephanopoulos (1938) assumed the
following order of magnitude relations:

Dr2-—-=0T1
DTl == BTH
KA =~ K. K]

From the arder of maztitude relations and the constraints
given above, they inferred five arder of magnitude rela-

» TH, KH

Flp, i. Counteroyrrent hent cxchanger.
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tions involving PT2 and DTH, OTC and DTH, DT wlere

and DTC, DT and PTH, and FC and FH. In the foi-

lowing paragraphs we derive the order of magnitude re-

lation between the same variables vsing the optimization

approach. o G ( DT ove BT DTt E)
"=\ DTM DT DTC DTH ' FH

F= (T, FHLTCLTC, DT DTLDTH,
OTC FCFH EC KR

Preblem revisited using optimization approach F=1rrrd

sphject to:
The optimization approach to O(M) involves formulatian
of the problem ag minimization and maximization prob-
lems. The aptimization approach {or the heat exchanger

1. Constraints derived from first prineiples that de-
scribe the physics of the process, Eas. (1), (2), and

prablem is f41.
Minimize/Maximize  Z = (on)? 2. The relational constraints thar describe th:_: order af
! magnitude relations {see Table | for definitian of the
X7 ratio}:

Tahle 4. frierval idensifioation for the feat exchanger

M) Yariables 2 Baunds Tnrerynl |depeificalion
P72, DTH ALE w0t - AT R 107 17630 % 1070 i
. TA0LE w0t~ 33T T A, % 0" —
Drr
ore
nTC, OTH 497754 — 01,99505 | » —— = 0935238
T
. .M
a7, orc 113] J0LH = D0 = W0 307 LIEIN w0 e ——
bBre
. . , b7
ory, oTH 20737 w 107  — 4. TRIE = 1" 5AM w107 e —
nrH
nre
o, FH | OLGE0 — 100073 1IMSn > —= = |
oTH
. . . far2
nTl, oTE | OB s LB — 51088 = 1070 00900 % 18077 —
DTH
bre
prC, OTH MOR1S] — 41,0099% | > —=— = BERIS0D
DTH
. om
oTE, PTE o 04757 = 10~F — 3007k = 10" (LO800] = —e—
nre
fr a1 D9 ORAs w LT [Nk A o7
L OTH 4,001 % 1077 — SORRS W L0 X m—
kgl oTif
nre
FC, FH | 6020 — 1.1930t Lalmt s =—— = |
ore
072, 0TH 20055 LO~E — 115 & (07! N.1886T = ore
z - o « =1 * - . h —_—
' OTH
ore
DTC, DTH (LEL0TE = [, 9999 1= —— = MhE333
DT
oD i 4, 200600 AT
BTy, 20 §.5191 » 10°7 = £.023Y = 07! \  —
T, BTC 1) TC
] frka!
DT, OTH RZ3% = 0= — | AEGT 5 L0 NI 1GHET = —=
READ kA1 1. 34000 o =1
g 1.1 -1 z . n —_—
FC,FH b ST
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DT

— — =1
pri
DTL o
oTH '
KH . 4
ke 7T

1. The baunds on the decision variables X, 7 (see Ta-
tle 2 for upper and Jowar bounds [or r):

0= ¥ = 20000

The above series of problems is solved for maximization
and minimization of Z, to obtain the upper and lower
hounds for the relational ratios gy, Since the relational
constraints are expressed in terms of talerance parameter
&, the bounds are obtained for different values of ¢ rang-
ing from 0.05 ta 0.2, The numerical results of (he exiremi-
2ation are shown in Table 4. Using the boundary values
for the heuristic interpretation provided in Table 2, we can
derive the O¢M) relatians between the variables from the
restlts of Table 4. [t is interesting to note thar as expected
the O{M) relations do not depend on the valne of e cho-
sap for the interpretation of the O{M) relations.

Tahle 5 shows the O{M) interpretation of resclts far the
case of e equal to 0.1, The last column of Table § presertiis
the order of magnitude relations obtained by Mavrovou-
niotis and Stephanopoulos (1988) using ATMS. 1t can be
easily seent from row 2 of Table 5 that O(M) doas not in-
far that DT is slightly less than DTH and therefore also
fails Lo infer the relation between FC and FH carrectly.
OIn the other hand, the eptimization approach infers all
the order of magnitude relations correetly far all the tod-
erance paramelers, in other words, DTH is shghtly greater
than D7 and FC is slightly greater than FH. This can
he atiributed to the fact that the optimization anproach
1ses continuous representation of variables sa no inlor-

mation is lost,

Table 5. Relgtional interpretation for the hear exchanger

4,2. Comparison of continnous slirred tank reactor
{CS5TR) and ping Hlow reactor (TFR)

This example is also taken from adavrovouniotis and
Stephanopoulos (1988). [n this example, compound QM)
relations are encountered that jllustrate the formalation
of fnequatity constraints foe compoutid relations. The ex-
ample demonstrates that the optimization approach suc-
cessfully derives the unknown O(M) relations in the
context of the two types of reaclors CSTR and PFR and
tiveir comparisorn,

The example is centered avound an itreversible first-
arder reaction, A = B whose rate ris given by r = &K[A].
The residence time of the reactor T in terms of volume
of the reactor ¥ and flowrate through the reactor F can
be given by the following relation:

[
T - (6
And the time constant ¢ of the reaction is specified as
7y

o=

b o—

Assuming isothermal operation, the mass Lalance
equations for cach type of reactor can he expressed in
terms of the concentration of reactant A in faed ()}
and in the effluent { ;). For a CSTR this leads to the
fallowing equation:

Cyr = Oyt — CT =10 6
O the other hand, for the PFR reactor it results in
C,) T
nt=—1]=—.

\avrovauniotis and Stephanopoulos {1988) used a
number of different O(M} refations between the restdence
fime 7°and the reaction time constant £, as shown in Ta-
ble 6, to derive the O(M) relations between the feed and

ATMS Resukrs

QMY Variahles Relational lnerpretation
e orz
nra, ore » — = OT2 < OTH Dy« DTH
1aeg BDOTH
ore
ore, oTH 1o = {l + "= D70~ BTH DTC ==, . >~ OTH
DTH
e ol
o, e e = 1T e OTC DT == DTC
l+e¢ ODTC
0 or
LT DTH x —— = 71 == OTH O =< DTH
1+c DTH
. oIc
Fo, FH flaciiz— 12> FH Fo - >»=FH
LRTH
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Table 6. (M) qaalvsis of CETR and PER

ATAIS Results

I'FR

Given Ofh} Relations CRTR
T et A O == 0
T .>¢ Oy = O Oy — 0
- C;-*:C] I::-;'CC'!:...—'C'C|
Tasat a0 Oa e 1)

sfflucnt concentrations (alse shown in Table 8) far Bath
PFR and CSTR. Their results were shown o capture the
difference between the PFR and CSTR very weil. In the
next few paragraphs this problem is solved using the pro-
posed optimization approach.

Proflem revisited asing optimization approach

The optimization approach for this problem involves si-
lutian of the following minimization and maximizatian
problems for a number of different {given) O(M) relations
between T and ¢, for both CSTR and PFR:

Minimize /Maximlze Z= (o)

X
where
"? = {?_1'r| E‘:|C| :I

_G

o=
L Cl

subject to the mass balance constraints given by Eq. (8)
for CSTR and Eq. (9 for PFR, The different O{M} re-
Intions between the time constants given in Table 6 are
converted in terms of the equality and inequality con-
straints shown in Table 7,

Table & provides the bounds derived for the ratio
C,/C, for varions valies of e, Using Table 2 we can ver-

JR. Kateghanam snd UM Diwekar

Table 7. O¢AY roinrions aid equivalet crngtraims

Qa1 Relarians

T —"'f'|=|:|
T, . =1 - 5]
an
£y = = =
Ty
r
To=r T—rﬁ—l}
T
Toax! - —r=0

if'y that all of the O(M) relations detived using the opti-
mization approach are the same as those derived by using
ATMS, Table 8 also outlines the pperating regions ob-
tained using the optimization appraach for tolerance
paramefer 2 egual to 0.1, “This illusirates how the optini-
zation approach also pravides the gperating tegions over
and above the qualitative relations.

4.3. Qualitative stability of stationary stales

This cxampie illustrates how the stability of stationary
states encountered in the startup of progess plants ean be
evalnated using qualitative infognation eaupled with the
optimization approach. Consider a chemical process sub-
system that consists of a cooler and a reactor a5 shown
in Figure 3. A typical scenario it the startup of process
plants mvobves maintaining a low Lemperature reactor Lo
prevent undesirable exothermic reactions between specics
A, B, which form the undesirable products LS, with reac-
tien tate r = A TAJ B A praportional controlier is used
ta keep the reactor temperature at ar belaw a set point

Prrpoiional
Controller
b 5 " -
q — | _——
Precod or

Sideproduct
Purge

Flg. 3. 4 reaclos blbsystean.
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Tobie B. friervad identificarion for the reactors, .0
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CSTR
T/t Relarion Bounds fnterva! laentilication
Fast 0.016645 — 094320 1= £y > HO0I05
T, >t 0.4TGLET — 03000 0, 90008 = £y A0 = 0.1
Pt G.00g ¢ 1072 — 0450489 0.90608 > Oy 50y = 0.0907]
Faat 1,994 » 10°% — 1804 x 107 00 =00 =0
PFR
Tt 7,01310 — 0949200 | > G340 = 00808
T =i 0.131B8| — 004841 = Oy = I
To—t B.Adl x 147% ~ 0193236 090805 = 340 = 1]
Toaxt 175w 10-8— 178w L0 w0 =1

T.p- The coil can cither add or remaove heat. To avoid
recycling hot material, the downstream valve ta the split-
tar is cloged. The primary concern is whether this sub-
system can be startod up o a stable sleady state.

In order to evaluate the stability of this stationary state
we write threc energy balance equations for beth the ves-
sels and the temperature sensot as follows.

1. The energy balance for the precaoler consists of
heat remeved by flow out through stream oo flow
in thraugh stream fy, and the heat removed/added
by the proportlonal controtler:

Fip Ly % = facaTn — JucpTo + KT — el {10
where T, 15 the temperature measured by the sen-
sor, and K. is a proportional control constant.

3. The reactor energy balance consists of heat acidecd
by the flow stream f, and the heat gencrated by the
reaction:

T,
Moo = oGy Ty + XIAIBH =8 )T (1

where the reaction rate constant has been teplaced
with its temperature dependence £ = XT..

3. The sensor energy balance is hased on the rate of
heat cransfer:

(12

where  is the Heat transfer coefficient between the
sapsor and the reactor liquid, and cp, ., A ate the
heat capacity and area of the temperature Sensor,

The key guestian that we arg faced with is whethet we
can assure the stability of this system in the face of incom-
plete ar qualitative information about the relative order

of tnagnitude relations belween various terms in the equa-
Hons., Io the following paragraphs we show how inruitive
propoasitions stated in terms of order of magnitude re-
lations can be formally verified using the aptimization
approach to O{M), and how we cail derive order of mag-
nitude relations that satisfy the stability requirements for
staHonary states,

Before we address these issues we reformulate Eqs. {1
{12} in a matrix form and pravide the Routh-Hurwitz
comditions for stability. Equations (10)-(12) are linear and
can he written in matrix {orm as follows:

Ty r So X 1 .

Tdr T 0 - K:Ep

at Mg mpc,n X

a7, Af

R 0 & (13
ot e, L

dTy " hA R4 5

]| gl oo Muars | |

Denoting the clements of the matrix by the shorthand no-
tation g, Li=1 ... .3, we can write the Routh-Hurwitz
conditions as follows:

b=y + oy — O >0 43

kp = @y fyy — @z — G > {15}

Ky = @yag day = &y Gy = 0 {16)
b = 2 i o 111
5= (@ Gys + @y Ay T a8 A

— (afyamp + day tgdn + dp i) = 0 (7

153 - kaﬁi}'ﬂ. {18)

The Rauth-Hurwitz conditions are not stringent criteria
in that they da not restrict the parameters 1o single val-
ues but rather define a domain of stability in the parasm-
cter space. This provides a basis for using gualitative
specifications o asceriain stability.
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Hypnihcsis testing using optimization
appraach Lo OM)

It is clear from the matrix it Eq. {13) that the term a;
which represents the exothermic reaction is a pasitive
feedback which could render the system unstable, {nto-
itively, it appears that if the exothermic reaction Lerm (s
much smaller then other diagonal gain terms, then the
system should stabilize. We will now iflusirate hew this
intuition can be east in an O{M} formalism and then use
the optimization approach to verify this hypot hesis.

To test this hypothesis one needs to find the relation
between the diagonal terms a)q, @33 and the exathermic
reaction term &g. The optimization problems can be for-
mulated as

MinimizesMazximize Ze = (o)t

A F
where
X o= (&) .83, 0212 Txa, 0, 000
& &
oy = (ér}i)
F= [}
subject ta the {ive constraints '[Eqs. {143-(18)] for stabil-

ity conslderations and the fallowing approximate bounds
on the parameters:

00l = X = 100,

The lower bounds of both oy and py are found o be
smallet than &/1 + ¢ and the uppet bounds smalier than
1 where the range of tolerance parameter £ varied from
0.05 to 0.2, This result confirms the hypothesis that the
conditions & << ay; and &y << @, in other words, the
heat of reaction term is much muel sraller than the other
diagonal gains, is sufficlent for stability. The interesting
resttlt however is that the optimization approach provides
a much less restrictive sufficiency condition for stability,
i other wotds, a3y < @p, and @31 < @33. These Oy Te-
latians are derived from the bounds derived for the ratios
and shawn in Table 9,

5, DISCUSSION

Mavrovouniotis & Stephanopoulos (1288} have outlined
the hicrarchy of modals encountered in engineering sys-

Tahte 8. frrervel identification for the steady states, € = i,

Q) Variables Bounils Taeerval |demificaiion

LI M — 099
R R i ]

1= H::.-"i‘l'u =0
i % Taadng, =0

A, 92
253 732
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tems according to their level of abstractions. This higrar-
chy consists oft

« Baolean models that identily the existence ar nonex-
istence of copstraints among pArameters.

s Qualitative models represent the next level of ab-
straction and include signs of the variables and di-
rection of their effect alomg with the existence and
nonexistence of constraints.

a Order of magnitude models alsa have infarmation
about relative orders of magnitudes of the quantities.

» Quantitative models invalve the most detailed nu-
merical and algebraic represcntations.

The use of quantitative models dominates the practics of
enginearing and science, Sophisticated quantitative mcd-
eling platforms, and large-scale modeling simulators
nased on numerical and algebtaic solution techoigues, are
widely available. Hawever, for most problems a fair
amaunt of qualitative knowledge at differcnt levels of the
ahove hierarehy is available in addition to the quaniita-
tive models. However, most quantitative moadeling plat-
forms and simulators are unahle to use this qualitative
infarmation. A unified framework that can incorporate
information ar ait levels of the above hierarchy inta its in-
ference wonld be desirable, Furthermore, given the avail-
ability of the powerful numerical techniques, it would be
maost useful if gualitative information at various levels can
he ysed within the same numerleal framework as the
quantitative models. [n this article we have tllustrated how
this gan be achieved.

We present an approach where ane can use the order
of magnitude knowledge in the same nnmerical frame-
work as that of quantitative madels. The O{M) relations
are converted into linear and nonlinear constraints that
can he easily coupled with the quantitative modals alsa ox-
pressed as linesr and nonlinear constraints. The problam
is phrased as a nonlincar programming {NLP) eptimiza-
tion probiem. The qualitative madels that are at the next
level in the hierarchy ¢an also be similarly represented by
nontinear equality and inequality comstraints. For exam-
ple, the signs of variables such as X, is positive can be
expressed as an inequality constraint given by X7 = 0.
So, it is possible to incorporate this qualitative kn owledae
in the NLP framework described above. Boolean mod-
els, on the ather hand, cannot be incarporated into the
1P framework since discrete decisions variahles are en-
countered, However, these logic variables representing
discrete decisions can be expressed mathematically as in-
teget binary variables, and reasoning is equivalent to solv-
ing a mixed-integer linear programming {MILP) model.
Therefore it is apparent that the optimization approach
involving solutions af mixed-integer tiomiinear programi-
ming (MINLP} models conld encompass the complets
rmodeling hierarchy and will lead to the wnified modeling
platlorm that we are locking for.



Oprimization goprogck (o LM} reasoning

. CONCLUSIONS

We have provided 2 methodologicat approach {or rrans-
Forming order of magoitude rclations into a numerical
framewark, 2nd the use of nonlinear optimization tech-
niques for inferring order of magnitude refations, We
have illustraled this approach with ckamples from the Al
literature and shown that the optimization approach pro-
vides more precise order of magnitode relations as com-
pared te conventional constraint satisfaction approaches.
This provides a crucial step in developing unified frame-
works that allow the incorporation af gqualitative infor-
mation at various levels of abstractions intg numerical
frameworks used for reasoning with quantitative models.
This has far-reaching tmplications regarding the simplic-
ity with which large-scale simulators used in engineering
can be atgmented Lo incorporate qualitative models,
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