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The generalized approach to the problem of synthesis under uncertaingy is to Forttie-
laie it as & stochastic optimization problem what inuolves optimization af & probabilisin
Sunction obtained by sampling over uncerain parigbles The compurational burden af
this approach can be exireme and depends on the sample 5ize used for characterizing
the paranmetric uncertainties. A new and efficient approach for stochastic Process sym-

thesis kv prasented. The goalt are achiened

Hirough an improved understanding of the

sampling phenomens based on the concepes derived Jrom fractal geometry. A new algo-
rither for stochastic optimization based on these Concepls o accelerate ihe process of
sprshetic under uncertainty i presented. Apart from the Benchniarlc HDA synhiests
problem, a real-world problem of synthesizing optimal wase Blands i analyzed to resr
the applicabiliny of this rove! approach it addressing the general probiem of syrthesis

- wnder sncertainty. The sofution of this real-

world large-seale synthesis problem is pra-

seried utider uncertaingy through the application of the new stochastic amealing alpo-
filn, witieh takcs inlo consideration nooe! sampling methods wsed in Probabifistic

ahalysis of process riodels,

Intraduction

Environmental ohjeetives have placed additional require-
ments on process data zad models couplad with the need for
sophistieated simulation technolagy 1o quantify the impact of
nollution prevention apions, However, a pumber of barrjers
still must be overcoms ta fully vealize the use of thess simu-
latiun technolngies for pollution amsessment and prevention,
For example, the number of available possible technology
Optinns to address environmental profiems has incrcased sig-

nificantly a5 a resnlt of several in-house and federally funded -

R&D initiatives over the pasl decade, Thus, a latge array of
technologies are now availabie or aee undar develapment far
emission control, This poses bewildering problem of sclee-
lion and optimization of emission eantral SRLENE Or pro-
cesses, development of analysis and tesign tonls that address
the full tange of aliernative approaches, Furthermaore, ug-
ccriainlics are inhercnt in the catly stages of now process
“developments and need 10 be cxplicitly characterized 10 fully
understand the risks as well a3 payolts of alicrmative syslems,
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The main goal of this article is 10 address the general prob-
lem of process synthesis (thay is, selection of optimal procass
configuration} under uncartainty with applications to ensi-

‘ronemental control technologies. This poal will be explicitly
Allustrated throogh a realaworld emvironmental problem —iie
selection of optimal blends ko dispose high-level radioactive

waste when uneartainties oxist in the waste composition and
in the physical model of the blending procedurc.

In general, the approaches ro process synihesis may be
classified as onc of the (ollowing: the thermodynamic ap-
proach {Linghaff, 1981 (he evolutionazy methods (Nishida
et al, 198I); the hicrarchical approach, bpsed on intuition
and judgment (Douglas, 1988% and the opiimization or algo-
rithmic approach {Grossmann, 1985; Fricdlor ct al,, 1995,
Painten and Diwckar, 1994), Thage approackes, altlangh dil-
ferent in principle, provide promising directions for process
synthesis research, and each one brings differcnt advantages
1o this field. This article concentrates on (he optimization ap-

proach e process syathesis, which fs more amenabie to inter- Lo

faciag with the simnlators and Bencralization. Figure la shows
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tion framewoark,

{b) stachastic optimlza-

ihis optimization approsch o process gpnthesis where the
Optimizer iteratively determines the decision variahles con-
sisting of diserete and continuays vatiablos, The diserete vari-
ables denote the exfatence or absence of units, whiie ihe con-
tinuons variables repressnt Mows, operating conditions, and
dosizn varigbles,

Canventional optimization of chemical processes arc deler-
ministic in nature. The fundamental difference  briween
conventional modeling and the new alicmative of integrated
crvironmental technnlogics, s the preblem of wneeriaingics,
Unceriainties arise primarily since the avallabie perintmance
datx are seant and the teehnical as well as the economic pa-
rameters are not well cstal¥lished for processcs that arc in (he
voaceplual stages of development. Morcover, many of the
tnvitunmental processes are poarly understond and sccurate
predictive models do not exist The deterministic pecfor-
mance models in conventional simulatlors cannot be wsed for
risk or safcty evaluations, A systematic framewark o analyze
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uncertaintics (Diwekar and Rubin, 1001} is kcy step in tiis
repand and promises to overcome some of (he dilliculties en-
eounteeed with dererministic simatars, This probabilistic or
sinchastic modeling pracedure involres {13 specifying the un-
certaintics in key fopul parameters in termis of probabhility
distribistions, (2) sampling the distrilution of the speeificd
parameter in an itcrative fashion, and (3) Propagating the of-
feels of uncorainties through the pracess Mow sheeis and ap-
Plying siatistical techniques 1o analyze the results,

A major bottferack in the stochastic modeling framework
Is the computational intensity of the recursive sampling, Syn-
thesis vnder uncertainty adds further complexty 1o the
stochastic modeling, as it fivoilves stochastic aptirmization
procedure, Figure 1b shows the stochastic _optimization
procedure, where the detersinistic model in Fignre 1a s
replaced hy the stochastic model, Thus the stochastic apti-
mizalion procodutes (synthesis under uncertainty) fnvalves
tecursive loaps: {1} the inner sampling loop, and (2) the outer
optimization loop. Therefore, it is desirable to roduce he
computational intensity of these two loops and their interac-
tions for their applicability (o large-scale synthesis problems,

Fecently, a sampling technique reforred as Hammerslay
scquence sampling (HSE) has been proposed that was shown
to exhibit better “homogencity™ over the multivariate param-
eter space {(Diwekar and Kalagnanam, 1997}, In this contexst,
homogeneity is defined as the ability to produce 2 uniform
digtribution of points covering the entire sample space sueh
that the everall distribition js mope representative of the
population {Wozmiakawski, 1991}, Further, for this now sam-
pling technigue, it was found that the mymber of samples re-
quired to converge to the different poriotmance mepsures
{such as mean, variance or fractiles) of an outpul random
variahle, subject 1o input uncertainties, & lwer compared 1o
Monte Carlo or Latin hyperente sampling techniques, Thig
rapid “ennvergenea” property of Hammerzley sequance sam-
rhing bas important implications for stochastic modeling of
processes, eugpesting that precise estimaies of any probabiljz-
tic function are achicvable by taking into consideration a
smaller sample size. This efficient samnpling can be wsed for
ihe fnner sampling loop to enhance the computational effi-
ciency of the stochastie synthcsis fmmawork.

The stochastic annealing algorithm, proposed in the eadicr
work {(Paintgn and Diwekar, 1995; Chaudhuri and Diwckar,
1995}, is 2n algorithm designed to cificiently optimize a prob-
abilistic ubjective fnction and is a good candidate for the
abter aptimization toop. The algorithm mapipulates the sam-
ple size automatieally, reducing the computational bottleneck
of the stochastic synrhesis nroblem. This is achioved by aug-
meming the real objective function with a peoalty termy (hat
tncorporates the emor bandwidth for the probability mea-
sire, However, the succoss of 1his algorithm depends on (he
Accurate characterization of the errar-band width of the in-
ner sampling loop. This artiete presenis o proccdurs for the
tharacterization of the crrar bandwidih fof the novel and ef-
licient sampling techpique, Hammersicy sequencs sampiing
(H55) (Diwekar and Kalagnanam, 1999, based on the sclf-
affinityy and sealing propenties of the crror with Lhe sampie
size. The characterization of the errar bandwidih aliows ope
1o use this new sampling technique for the inper leon in the
framesorke for synihesis under uncetisinty, T is shown that
this new capability is able ig improve the petformance of
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slochastic annealing to a large extent, reducing the computa-
tional intensity of stochastic synthesis considerably (as it has
beon shown that the accurate claracterization of the ecror
bandwidth is eritically important in delining a mote realistic
penalty term in the gtochastic annealing algorithm, so (hat
faster convergence to the optimum is achievable). This is iI-
[ustraled by resisiting the DA symthesis problem presanted
carlicr (Chavdhuri and Diwekar, 1996) and throwgh the salu-
tion of a larpe-reale covitonmental problem: the determing-
tion of gptimal waste blends from a high-level radinactive 5ite
where uncettginties cxist in model parameters and waste
composition,

The article is organized as follows: the sccond and third
seetions provide the necessery background for the new vari-
ant of the stochastic annealing algorithm. The second section
deseribas the zeneral sochastic anncaling algorithm for the
synthesis af processes under uncertainly. The third section
presents the peneral sampling techniques, illwsteates the con-
VEIEERRS properties, and comparcs the ermar bandwiddy for
Monte Cade and Hammersiey scquence-sampling  tech-
miques, The (ourth sestion is devoted to the new varanl of
stochastic annealing, In this scction the HDA synthesis prab-
lem analyzed by sovern| rcsearchers in the past is revisited to
iMusteate the computational cificiency of the new algorithm,
Finally, the fifth section is dedieated to the case stdy of the
large-scale optimal waste-blend spnihesis problem.

Stachastic Annealing: Penally-Funciion
Formulation

In general, the nptimization appraach to process synthesis
invalves {n) formulation of a concepiual fow sheet incorpo-
reting all the ajternative process configurations (supersiruc.
ture} and (b} identifeation of an oplimal design configura-
tion based on optimal structural topology and the optimal
parameter level scitings for a gystom (o meet specified per-
fommanes and cost objectives (Grossmann, 1999, Onee the
Superslructure is known, optimization algorithms can be osed
ta solve the synthesis problem, Mixed-intzger nonlinear pro-
gramming (MINLP} algorithms are commonly used to abtain
the optimal struetnce a5 well as optiomal design, The fmpte-
mentation of MINLP synthesis capability in a sequential
modular simulator (SM$) pases challenging problems duc 1o
the: “black box" nature of sequentizl moduTar simulators (D;-
wekar ot al, 1902 Diwekar and Rubin, 1993). Furthermorc,
the MINLP process synibiesis capability enconniers diffienl-
ties when funclions do not satisfy convexity eonditions, for
fystems having many possible configurations {leading to large
combinatorial explosion’, ander when the sohition space hag
discontinuities,

The alternative 1o MINILP optimiization s to wse simulated
annealing (SAY (Kirkpatrick ot al., 1983}, Although simlgied
annealing is compatationally intensive compared (o MI{NLP
ynthesis, it chreumvents the problems associalcd with an
BMINLP syntbiesizer, 5S4 s a recenily developed probabilistie
methoed for combinaturial optimization based on fleas from
slatistical mochanics (Kirkparrick et al., t983), The analogy in
simulated annealing is the behavier of Physical systcms in the
presenec of o hoat bath: in niysical anncaling, all aiomic par-
ticles arrange themselves in a (anice formation that mini-
mizes the amount of coerey in the substance, provided (he
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initial temnerature (T} is sufficiently hish and the cavling
iz carried out slowly. Al cach temperalure, T, the sysiem i
allowed o reach thermal equilibrium, which i eharacterized
by the probabilfry (P of being in » stale with enermy F piven
by the Bolizmann distribartion:

Pr(E) = 08K, 9

)

where K, i5 Boltzmann's constan (13506 » 162 YAdeprees
K} and 1/Z, is a normalization factor,

In simulated annealing, the objective function (ugirally eost)
Becomes the energy of the systemy, The poal is 10 minimize
the eost/energy. Simuiating the behavier of the: sysiem then
becomes a question of generaling 2 random porturbation thay
displaces a “particle" {maving the system to another config-
tation}, If the confipuration § representing the set of the
decision vatiables @ that resnitg from the mave bas 2 lower
ENCTEY slate, the move is zceepted, Henwever, i the move is 1o
a higher encrgy state, the move js aceepted according to he
Mectropolis eriterfa [accopred with probability = (1,2} x
e~ fyan Laarhioven and Aarts, 1987). This implies (hat
at high temperatures,  jarge percentage of upiill moves are
accepted. However, as the temperatures geis eolder, 2 small
percentage of uphill maves is aceepted. After the system has
cvelved to thermal equilibrium at a Biven (emperature, the
lemperaline iz lowerad and (ke anncaling process continues
unti! the Fystem reaches a2 temperature that represents
“lreczing” (F=1T, ) The cquilibrium detection at coch
lemperature is a function of the maximum allowable mowves
at each temperatuze, N, or aecepl/reject Jimits AL, /M.
Thus simulated annealing combines botly iterative improve-
ment in local arcas and random fumping to help ensure that
the system eloes not get stuck in a local oplimum. Although,
the original SA algorithm was nat desigied to handle con-
siraints or infeasibilities, there arc variaus ways of dealing
with this problem. Far ¢xample, one can wse explicit penal-
ties for constraint violation (Painton and Diwekat, 19943, or
use infeasible path optimization, or use 4 courpled simulated
annealing—ganlinear programming (SA-NLI} approach
whero the problem is divided inia two levels, similar to the
MINLP algorithms deserihed carlier. The outer level iz SA,
which decides the disercte varables, The Inner level s NLP
for continuous variables and cag be used ko obtain feasible
selution to the cuter SA (Narayan e al., 1996)

Stochastic anrealing: o pariant of simulared anreiling for
Sprthesis wnder uncertainty

The 54 algorithm deseribed earlier s wsed for determinis.
lic synthesis problems. The sinehastic Annealing algorithm,
rropased in earlier wark (Painton and Diwekar, 1905;
Chaadliri andd Driwckar, 1996}, is an algorithm degigned 1o
clitciently optimize a probabilistic objcctive function, In (he
stochastic annealing algorithen, the optimizer (Figure 119 noe
only ubtains the degision variablas bui alse the number of
samples toquired for the stochastic modal, (By “stochastie
arncaling™ we refer w the annealing of an wneertain o
atochastic finetion. I must be reatized that rhe simulaled gn-°
ncaling aigodthm js inhereotly a stochastic algorithm, since
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the maves are determined probahilistically. For our PUCRDSES,
however, we are referting ta the annealing of a deterministic
objective function simply as simidated annealing,) Further
more, it provides the trade-ofl between accuracy and ffi-
cicncy by seleeting an increascd number of samples as onc
approsches the oplimum.

The new objective Fanction in stachastie amnecaling therc-
fore comsists of a probabilistic ohjcctive value P and the
penalty funetion, which is represented as fallows:

min Z{cost) = P{x,u}+b{r)e,. {3

In the preceding equations, the first term represents the
real alyestive function, which is & probabilistic Finetion in
term: of the decision variables r and uncertain variablos I,
and ail ather terms following the first term signify the penalty
funciion consisting of the weighting function 5(t) { = &, 4"}
and the error bandwidih, ep faz a {unction of number sam.
ples). The weighting function 5(¢) can be expressed in tepms
of the annealing temperature levels, ¥, while & is an empirical
constant (such as 0.001). The funciional dependence on the
weight of the temperature level is controlled by these con-
stants, namely £, and &, which may be different from one
problem to another. At high tempemtures, 1he zsample iz
can be small, sines the algoiithm exploces the functional
topolagy or the eonfiguration space, fo identify regions of op-
lima. As the system pels cooler, the algovithm scarches for
the global optimum; consequently, it is necossary B take more
samiples o pet more pecurate and realistic objectives Aosts,
Thus, A#) increazes as tha temperatitee decreases,

The stochastic annesling algorithm mitimizes the CPU
time: by balancing the trade-off botween computational effi-
ciency and solution accuracy by the introduction of a penaliy
function in the objcctive function, This is MECCTmANY, e at
high temperaturc the algorithim is mainly caploriag the solu-
tion space and does not Tequire precise estimates of any
probabilistic function. The algorithm must select more sam-
ples, as the solutiun is near the optimum. The weight of the
PeRaity term, as mentioned before, is governed by &) and is
based on the anncaling emperare,

HDA synihesis

Applieation of this algotthm for the expected-value func-
tion, nsing tho approximate ervor-bardwidih piven by classic
statistics, is very encouraping (Paimon and Diwckar, 1995;
Chaudburi and Dhwekar, 1998). The laier article, presents
the process synthesis of a benchmark process in chemizal en-
gineering-——The hydro aliylation of telucne {HDA) PrOCESS
—_2% 4 lest problem for the stochastic anncaling algocthm.
Tihe HDA process has boen studicd extensively by Dauglas
and others, starting from the hierarchical approach it pro-
cers symthesis {Donglas, 108%: Koo angd Grossmann, 1949:
Diwekar ot al, 1992}, The problem that was presented by
Chauvdhuri and Diwekar (1996 involved selecting the optimal
configuration and oplimal design of the HO, process when
thete are uncertaintics in he cost parameters. In order 1o
ilinstrate the computational efficicocy that can be achicved
using the stochastic annealing algorithm, which antomatically
selects the optimum number of samples, the process flow
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sheet was also run using simulated anncaling with fixed sam-
rie size. The stochastic annealing was able to atiain the apti-
mal design eonfipuration obtained using simutaied annealing
with a [ixed sample size, but the stochastic annealing algpo-
tilthm achieved 80% savings in CPU Gime using the results
from the centeal limit theoserm. Farther, it provided an mio-
mated, elficient approach to siochastic synihesis. This now,
innovative synthesis algarithm therefore holds Brcat promise
in the synthesis of large-seale eomplex chemical Processes un-
der uneertainty. The proposed new sampling technigue can
enhance the computational cificiency further, However, the
suoeess of this algorithm depends on the aseurate characten-
zation of the error bendwidth in terms of the penalty term
{as depicted in Tq. 2. The central limit theorem from the
classic statistics is only applicable to Monte Carla tochniques
and for the evaluation of the expected valur. Although this
algorithm was implemented in the context of Maonte Carlo
sampling, the algorithm in the present foom is nat applicalye
to non-Monke Carlo technigues such as (he now Hamimers.
ley sequence-sampling techoique presented in the nest see-
lian. This is bocause in stochastc annzaling, the cooling
schednle iz used to decide the weight on the penally term for
imprecision in the probabilistic olyjective funetion. The choice
af a penalty term, on the other hand, must depend on the
etror bendwidth of the function that is oplimized, and must
incotrporaie the effect of the aumber of samples. The charac-
terization of the crror bendwidth is ol passible for
nen=Monts Carlo technignes. Hence in this artide we pre-
RetHl & now variant of SA. An appraach based on fractal di-
mension provides the penalty term for this new variaat,

Role of Convergence for Differant Sampling
Techniques

Sampling techniques piay a eritical role in stochastic mod-
cling of processes. The sampled values for the uneertain pa-
ramelers must be gencrated in 2 manoer thal cnsures that
they arc randem and homogencous over the multivariaie Pa-
TAmeter space, and truly representative of the population. It
is essential at this stage to present some of the highlights of -
the different sampling techniques in order to deserfbe the
fractal dimension approach far quantifying statistical errors,
In the submeqien: seetion, the sampling techniques vsed in
stachastic experiments are discussed, foltowed by an illustra-
tion of the statizsiical error and the key converpenee proper-
lics of the sampling techniguas,

Common rampling techuigues

A stochastic aptimization problem fnvolves integrrls of any
probahilistic function, Hence A sampling techtigue that pro-
vides a represcnlative sample from the mullivamiate probabil-
ity distribution is crueial in btaining trus performance statis-
tics for optimization, A general appiroach is 10 generale a
sequence of A sample points on 2 k-dimensions) hypercube,
assuming a uniform (L0, 1) distdibotion. One of the mast
widely usedd sampling techniques for sampling from a proba-
bility disiribution is the Monte Carlo sampling Lechnique,
which iz besed on a pacudo-random Eeherator o appnowd-
mate a uniform diztribwtion, IR0, 1), with » samples. The
specilie walues for each input variable are selecied by inverse
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trensformation swer the cumulative distribution funetion {Ang
and Teng, 1884). A Monte Carla sample also has the impar-
tant propeoy that the successive points in the sample are in-
dependent. The main advantage of Monte Carla sampling lies
in the f2cl that the resoits from any Monte Carlo simuiation
can be treated wsing elassic statistioen) methods: (ks resulrs
can he presented in the form of histograms and mothods of
statistical estimation. A critical observalion, based on clasgie
statislics is thal, on an average, the coror e of the afpLoeina -
tion for the mean is of the order O~ Y2} and is not depen.
dent on the number of variables,

In most applications, the actual relationship hetween sne-
£ossive poinis in a sampie has no physical signiiicance, hence
the independent Aandomness of a sample (or approxitmating
a uniform diseribution s not critieal {Knuth, 1973} In such
cases, uniformity praperties play a conteal role in sampling
techniques, and constrained or stratified sampling technigues
are more appealing (Morgan and Henrion, 1990} Latin by-
percube sampling {LHS) & ane form of stratificd sampling
that can yield morc precise estimates of the distribution func.
tion (Tman and Shortenearier, 1984}, [n Lalin tiypersube
sampling, the range of each uncertain parameter X, is subdi-
vided inle nonaverlapping fntervals of equal probahiTity, One
value from each interval is sclected at random with tespect Lo
the probability density In the interval, The » values thus ab-
taincd for X are paired o a random manner (equally likely
combinations) with n values of X,. These n values gz then
combined with k values of X, to farm r-1ziplets, and so on,
until n k-tuplcts are formed, The main drawback of i strat-
ification technique is that it is wniform in one dfmension and
does not provide uniformity propetties on a k-dimensionat
hypercube, Further, for Latin hypercube sempling, sample
scenarios and oulcomes are random, but not coinpletely in-
dependent. Consequently, this implies that elassic statistica!
methads are not applicable for analyzing any probability
funetion such as the mean, fractile, or the varfance for the
sampling error manifestcd through the crror bandwidth,

An cfficient sampling tcehnigue based on Hammerslcy
points has been developed that provides a fastor CORVErgonee
tate than commaonly vscd teshnigues (Diwekar ang
Kalagnanam, 1997), This samplimig technique uses the Ham-
metsley points to uniformly satmple a unil hypercube, and uses
the fnverse transformation over the Joint cemulative probabil-
ity distrfbution to provide a sample set for the variakies, This
sampling dosign based on Flammerslcy peints has better upi-
formity propertics, since it nscs an optimal design seheme far
placing n points on a A-dimansianat hypereube,

Conuergener properties and error bandwidth of sampling
fechinigues

This sectinn presenis the comvergence properics and the
crror bandwidth associaled with different samphing rech-
niques, guatitatively. Onc stralegy for datermining the con-
vergence propertics of different sampling techniques js to
ascertain the sampling acemracy, that %, the oumhar of sam-
ples tequired by any sampling scheme 1o converge for any
probability function, for example, the mean or 1he variance,
Ii has been observad that the numbser of samples required for
canverging to within 1% of the mean or vadanes for Ham-
mersley sequence sampling technique is of a factor af 3 1o
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18} lower than Latin hypercube and Mante Carla sampling
techniques (Diwekar and Kalagnanam, 1997), This Supgesty
that the Mammersley sequence is an efficient Eampling
acheme bt cag circomvent the computational burden in
stochastic modeling and synthesis. Classic statistical methods
provide good estimates for the bounds for traly random
Monte Carlo sampling and are not applicable to other legg
random sampling technigues. Figures 2 and 3 show the upper
and lower toonds based on the true mean and the true stan-
dard deviation (both estimaied ar 10,000 samples), charaeter-
izing the errar bandwidth af the estimated mean of a
quadratic function of two unecmnain parameters [ flx,, x;)=
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0.1, 1.0)] for Monte Catlo and Hammersiey sequence sam-
pling at 95% conlidence levels, It is ¢learly cvident dhat clas-
sic medhods to chatacierze the error bandwidih for any con-
fidcnee level for Hammersley sequence sampling overesti-
mate the bounds. A similar trend is also observed for the
bounds on the variance (Figures 4 and 5). Based on (he as-
sumption that the troe probability distribution §s normal,
chi-square estimates for the crror bandwidth for 2 95% confi-
dencs level provide true bounds for Monte Carls sampling
and oversstimated bounds for Hommersley scquence sam-
pling. These fipures show wonclusivaly that therz is a need o
characierize precise estimates of the error bandwidths for the
improved sampling techniques, sinee it has important impli-
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cations on the sampling acturacy in stochastic modeding, syo-
thesis, and unccrainty analysiz, In the next subsection we
diseuss how sell-allinily and sealing propartics can be used Lo
characterize the errar bandwidth for Hammersley scquence
sampling.

Sclf-affinity and sealing properties of the ervor bandwidih

The previops seetion illustrated how classic statistics over-
citimate the error bandwidth for mon—Monte Carlo tech-
fliques, In the following sections, an approach 5 owlincd to
quantify the errot bandwidths for any probabilistic funciion,
bazed on the self-affinity and scaling properties of similar
structural pattems shown by many natural phengmena.

Tased on the structors of speech waveforme (Pickever and
Khorasani, 1985} and acsustic signals (Morgas and Sun, 19940),
which show similar irreguiar patterns 75 the errar associated
with the ssmple technigues, it 15 possible to draw an analogy
Between the structure of sapeech waveforms or signals and the
ceror bandwidth of sampling techniques. For exampie, para-
metric test signals exhibit randem fluctuations with time, just
as Lhe errar due lo sampling techniques exhibit random five-
tations with the sample sizc. Figore § shows the relative er-
ror bandwidth of a probability function for different sample
sizes. The characteristic probebility Tunction shows here is
the mean [or a quadratie function [ f{x,, x5} = xF + ¥3] of twn
uncertain parameters, x; [Uniform (0.1, 100] and x, [Uni-
form (0.1, LOM. One can visualize a box whose height (repro-
senting the relative crror} seales in a statistieal sclf-similar
fashion with the sample sizc. A comparison of the numbcr
and nalure of peaks in the two djacent baxes shows that the
adjacent boxes exhibil the same “frregular™ scaling behavior
ol the crror bendwidth with the sample size. The conespt
of statistical seale invariance is chssrwable (similar to the
characteristics of the spcech waveform and parsmetric test
signals)h, where each of these boxes are self-similar (o7 self
afline} in an everage sense. Analogous to the speech wave-
forms, where acoustic propertes seals invariantly with time,
in this case, the errar bandwidth seales invatiantly with the
sample size.

In light of the preceding discussion, a realing relationship
is proposcd between the error bandwidih and the sarmple size

nns P
1M
am|

on2

Balatlve Error Band-width

s ]

Mumlrer of Samples

Figure 6. Relative error bandwidth shows =elf-affine
propertles and scales with the sampla size,
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Error bandwidth « n?, {3

where ~ i interpreted as “scales as,” aad o is the exponent
that s charaeteristic of different sampling techniques. Pick-
aver and Kharasani {1935) have alsa pointed ant that a good
excreise o test for sclf-similarity i to plet the =caling rela-
tonship in a log-log plok. If the pheaomena have self-similar
properties, then tie fine will he remarkably straight, sugpest-
ing a probable fractal nature {Mandzlbrot, 1983), Studies (hat
show the similarity of the error bandwidih to fracial ohjects
are presented elsewhere {Tiwekar, 1999).

Rrror characterization af Hammersley sequence sampling

Thig seation fllustrates the methadology for chacsctorizing
Ihe error bandwidths for the new samnpling techaique, Ham-
mersley saquence sampling. The same approach was alss ap-
plied to the Monte Carla technique 1o compare the relation-
ship of the errar bandwidth with the sample size obilained
using the proposed methodology and classic statistles,

In this ease, the error bagdwidth & s defined, as the rela-
thve abaoluke error cxpressed as a Perccntage:;

—%
E,=.['r"__"°.m'_}x1m. {4)

L

where . is any estimate of the probalility fenction, and x,,
is the estimate of the prabability function after convergenee
at higher samples, and reflects the actual value of any proba-
bitity meagyre,

A larpe matrix of tests, including the type of [unction, type
of distribution, and the number of ncertain parameiers, was
designed 1o study the refationship of the error handwidih with
the samiple size for different sampling tochnigues. The matrix
structire involved the fallewing:

» Funetions. Five dilfcront t¥pes of [unctions were wgod
a5 oullined helow:

Funetian type 1: Lincar additive:

flepxs o 5)=Tx  r=2,...10
i1
Function type 2: Multiplicative:

f(-rn-rz,..,,.l',}: ]__[-t,l

J=1

Funetian type 3; Quarraie:

flxes, .z = Fa?

Funetian 1ype 4: Exponeniial;

_.I"{I“I;....,I,}- ixlm(-ﬁ}

AIChE Tonrnat

Talle L. Errar Claracterization far ilie tean and
Variance ar Monte Cada Sampling

Ay flop), X, tnorm), Xy (onifl,
Xy (logd A, {narm) Xy funit
Menn
Function IiM nt d'f R IiM B
Type | -057 000 -043 083 —Ngg 085
Type 2 =055 047 =51 LI —0.47 0n.84q
Type 3 =033 0949 -{153% 005 —k3} {155
Ty 4 =154 0.99 =054 0.9 —-{59 i1.9%
Tye§ 051 099 -060 099 g6 e
Vartapce
Function & R o R H Rr?
Type 1 07 0% 75 030 _pgs mog
Type2  -0R8 097 068 087 -0g2  go9
Tyme 3 {56 098 —05¢ N9y -044 099
Type 4 =051 0.95 —0.51 0.85 —1.54 0549
Type5 . =064 099 —{.64 099 -0  0oDo

Funelion type 5: Logarithmie:
+
flzuz )= Tloe(x)  r=2,...10
i=1

where the x; are the uncertain parameters described by the
probability diseributions,

= Distributions,  Three types of distefbutions were selected
to characzerize the nncertaimties jn the input variables a;. The
first one is skewed {lognormal), while the last twe zre sym-
matrie {normal and wniform).

The validity of the proposed ratation for the eimor band-
width and the samplc size (Eq. 3) can be shown through 2
log-log plot of the error bancwidth, characteristic of aach of
the seli-affine adjacent hoxes and the sample size. I Bg, 3
kolds true, then the log-Tog plot will vield a straight ine, Ta-
bles 1, 2 and 3 present the sesults for the crrof bandwidth for
toth the mean and variance with respoct fo different fupe-
tions and different distributions for Monte Cario and Ham-
mensley sequence sampling,

For the quadratic funetion (funetion ¥pe 31 mentioned
previously, log-Tog plots of the error handwidth are plotted

Tahlz 2. Ervor Characicrization far the Mean and
¥ariance for Hammersley Seqnenee Sampling

Anprsi 1999 vol. 45, Mg, 8

X7 (o), & (norm), X, (unif},

Xj ﬂﬂgl Xj {ﬂumj X] (Uﬂiﬂ
Fitnalion " r? H Rl i R:

Meaw
Type i =207 057 212 098 =109 g97
Tyvpz 2 247 ngg -3 89 =197 9!
Type 3 =212 0% =415 0488 —102 Da7
Type 4 —228 093 -235 {40 =412 993
Typa 5 247 0o -L7  N&s -1R3  nw
Varigner -
Tvpe 1 —18% 093 —128 085 -1 Ny
Typz ~139 0N#R =163 Am 145 93
Type 3 =200 0095 -L18 g -1.21 n.og
Type 4 —LE 196 -1 qpop - .47 093
Trpe 5 =495 Q499 =184 090 15T 093
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Table 3. Error Character{zation for the Mean and
Varianes for Hammersley Sequence Sampling far n
Range of Uneertzin Parnmelers and for Twe Different
tunctional Eorms

Funciion Type 1

Function Type 4

Mo, of Mo, of
Unceriaiet Pars, &Y Rt Uncertain Pam. i n
hdean
2 —-15 0497 Z =212 {193
E| —20F 093 3 =210 o5
] ~1.31 D& 4 -149 0.9
3 =171 092 5 -1L7% 192
& —163 0493 [ —1% {40
7 —1.41 058 7 - 1.5 fo%
B =1.7% 0.9 3 - L.77 5d
a —-I191 093 a -1E7 1098
10 —1.8 {97 I «~ 178 098
Farimee
2 =126 097 2 ~147 {493
3 =116 099 3 —1H 09
4 —148 091 4 —-1.32 039
5 —-176 099 5o -132 noa
] -141 009 ] =132 Q99
7 =144 099 7 =139 0%
5 —-1.33 059 ] -9 099
4 =127 098 ] -101 097
1] - 1.62. n9g In. —131 Q%0

Agatast the sample size for both the mean (Figure 7) and vati-
ance (Figure 3} for Montc Carla and Hammersley sequence
sempling based on two uncertain parameters, x; [z, is uni-
form, 004, 100 and x, [, s uniform, 5001, 109, The
scaling refationship i5 obvious from the twa figuras, which
exhibil good coefficients of detcrmination (#? values), sug-
gesting its fractal natore. [ is worth rmentianing that a simple
curve fit of the cror bendwidit v, number of samples did
not yicld good A% walues, proving conclusively that the refa-
tienship between the error bandwidth and tihe sample sizc s

TEAITII - B EVAMR; v v 0,955 {ES)

¥= 12400 - LO1R0x; r2=noHIEATIRS)

In (Percent Rel At Error In the Mepn)

ItNamplo Sirs)
Flgure 7. Characlerizatfon of the error bandwidih asso-
ciatod with the mean for Monrte Care and
Hammersley sequences sampling.
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Figura 3. Characterization of the error Bandwidth aszg-
clated with the varfance for Monte Carlo and
Hammersley sequance sampling,

not 2 pewer-law relztionship, and haik self-affinity and the
scaling properties must be taken into account o obtain Enad
linzar lits that suggest its fractal nature. The exponent M
obtained from the slope of the linear telationship, which is
different for the mean and vardance and for Mante Carlp and
Hammersicy sequence-sampiing techniques, Nate; however,
that this medel may not be applicable for extremely Iow sam-
ple sizes {that {5, N tending ro 1), The tigher dimensions
abtained far the mean and the variance for Hammersley se-
quence sampling are consistent with the fact that probabilicy
[unctions such #5 the mean and the vasance LONVErge at many
fewer samples for Hammersley sequence sampling than lor
Mante Carle sampling.

[t is scen that the characterization of the crmar bandwidth
for the meen based an the sclf-affine fractal characterization
in the casc of the Monte Carlo technique s almaost identical
1o the relationship predicted by classic statisties, It may be
recalled ihat ciassic statisties predict that the error band.
widtly of mean for Monte Carlo techniques should scale ax
N7P5, whare N is the sample slzc. The experimentally deter-
mincd exponeat for the relationship between the etror band-
width and the nomber of samples is almost —0.5, with gaad
linear fits, indicating that the propgsed madel charaeterizes
the error bandwidih for Monte Carla tampling technique
faicly wail,

Tt @5 also obsarved, basad on cxperiments with several un-
ferlain parameters for Hamtiersley sequence sampling and
far Monte Carla sampiing, thar the cxpoaent K is indepen-
dent of the number of 1mesriain pamameters, the output rela-
tiomship, or the type of unccriainty distributions. This is im-
portand, since it shows that this mathael of charzcterizing the
errar bandwidth is robust, and quantifies the behavier of the
error bandwidih with 1he sample ize glabally. 1 was nb-
served that the Latin hyperenbe sampling technique did not
consistently predict the same exponent when the number af
variables, functional relatianship, or diswilartionz arc
changad,

Yol. 45, No. § ATCIE Jourmal



" Mew Variant of Stochastic Annealing

pased on the resuhs presenied in the carlier wables, the
error bandwidth for the mean in the case of Warmmersley sc-

ence sampling scalos with W, the sample size, as N™'8,
Canscquently, the penalty term in (he stochastic aonealing
alparithm for the mean fn the case of Hammersley sequence
gunpling is defined as

B B
€p = [ T] NI.-HTJ:II:‘T’
k' hss

where, by and % are cmpirical constants, ¢ s the corrcspond-
ing temperature level, which decreases as the annealing pro-
cecds, and N, is the number of samples. T may be re-
called that the penalty term in the stochastic annealing algo-
rilhm for the mean in the case of Monte Cario sampling is

given by
by -
bir}fp- (F]Mc‘;ﬁﬂﬁﬂi

The empirical eonstants are determined through caperi-
mentation such that the penalty term is less than 5% of the
real objective function, as mentioned cardier, and they are
problem-dependent. The next paragraph flusteates the com-
putational efficiency of the stochastic snncaiing algorithm
implemented with 1he Hammersley sequence samgpling, for
which the arror bandwidth was charseterized based on the
gelBaffinity and sealing properties mentioned pravioushy

HDA prabiem recisited

In Chandluri and Prtwekar {1996), the HDA process was
synibesized in (he presencs of uncartaintics, whees the sam-
pling method was hased on Latin hyporcube sampling. Az

Table 4. Comparizon of the Resulls for the DA
Froblem Tsing Stochastic Annealing Imptemented with
Latin Hypercube and HammersToy Sequeace Sampling

Technbqtns®
Algorithen
Stachastic Anncaling Stochastic Anncaling
HES-Scpling LHS-Classic

Deecisian Variables Relationship Relatinnship
¥yl 1 1
¥ n n
¥3 i ]
» | 1
Conversion f.Aa19 (LA
Bepetor tomp, 36T K 27 K
Fumace lemp, £19 K 93 K
Molar flow rate 249 kmal M 253 kmol/h

(hydropen (eed)
Malar e rate 126 kmal/h 127 kmalsh

(luene feod)
CPrU Aime 736 = 14516 5
Mrximized Peofil, 547 1 Gs0

*For Hrmmersley sequence ns oppused tor Lafin lypescube sampling, 1he
BIFOF bandwidih was eeeararely chirnclerlzed using a robusl approach
Bascd on self-allinty and seating prcgrizrd ics af e eTror with the simple
size.

mentioned previowsly, the error bandwidih based on clasgic
statistical meihods arc overestimated for noa—bMonie Carlo
techaiques. In this ease, the synthesis of the MDA pracess
was performed wsing the new varant ol stochastic annealing
Based on Hammersley scquenee samipling for which the error
bandwidth was charscterized using & sealing relationship ob-
tained from the scli-affinity and scaling properties of the oc-
ror bandwidily with the sample size.

Table 4 illustrates the computational savings of the
sinchastic annealing algorithm with Hammersley Sequence
sampling ineorporating the crror bapdwidih characterization,
The results show that this eapability improves the petlor-
mance of the stochastic anneaking algorithm, thereby redue-
ing the computational expense (by approsimately 33%) of
stochaglie synthesis, This & particutarly ecitical for large,
eomplex process flow shests, which can now be synthesized in
compulationzlly affordable time. The second part of this ari-
ele prosents a large-scale prohlem of synthesizng optimal
waste IMend where \he new algorithm reduced the compta-
tional time from 4 days o 18 hours,

In ardet te show the applicability of the stochastic anneal-
ing zlgorithim with the fractal diinension approach far guan-
titying the error bandwidth, it % nccessary to apply the
algarithm 10 a large-scale problem. The prablem choszen {or
this excrcise pertains to the synthesis of optimal waste bleads
under vncertainty, .

Synthesizing Optimal Waste Blends under
Uncertainty

This section illustrates the application of the stochastic

-annealing alporithm, which takes imto consideration mare

efficient Sampling techniques for siochaziic madeling and
synthesis of chemical processes, on (he determination of opti-
mal waste hlends enconntered in a classie, reabworld envi-
ronmental problem, This problem relates to the Hanford site
in southwestern Washington that produced nuclear materials
using various processes for nearly 50 yeams, The hyproducts
of many of these processes resulted in the production of haz-
ardous and radioactive wastes of widely varying composition.
Although the site ecased to be a manufaeturing facility 3 few
docades agn, “Hanfard was reborn in 1989 with a new mmis-
sion—to be the fagship site leading enviroumental restora-
tion” (Tlman, 1993), In ordar o facilitate the cleanop and
the restoralion prosess, the wastes were elagsified into figh-
ioet and fow-fepel fractions to be jmmobilized far [uiure
dispozal. The dleanup cffort Ied to the investigation and fden-
ification of new technologies for the reclamation of radio-
active waste for disposal or long-term storage,

At presen, it is desired that the high-Tevel liguid waste be
cunverled (o harosilicale glass for storage in o geologic repos-
itory, since radioactivity does not lesl easily through plass.
This process, called vitrifizatian, reguites that certain condi-
tinns related to “processibiliy™ and “durahility” e satisfied,
£a I1hat the convarsion i achievable, The processibility conei-
lions ensure that during the processing stage, the ghass melt
has propetties, such as vireosity, electrical eonductivity, and
liridus tempermnre, that lie within ranges krown to be ac-
ecptable for the vitrifieation process. The durahility eonsider-
alions ensime that the resultant glags meels the guantiiarive
eriteria Jor storape in a TeposiloTy,
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50000 gal to 1 million gal UM KL o 38 ML contaifng
radicactive waste. During the vitrification process, it s re-
quired that the wastcs in the tanks and appeapriate glass
forms (frit} arc mized and healed in 3 meher 1o form Elass
that satisfies the consiraints. Tha main obfoctive is 1o add e




pertain to unceriaintics in the waste composition. The as.

nigue, Hammersley sequence sampling (H35) (Diwekar and



mization techriques so that the optimal Blend eonfiguration
is datermined,

Deterministic Optimization Problem.  Narayan el al. (1996)
sindied the deterministic problem of determining the optimai
Blend eeafiguration bascd on 21 tanks and 3 blends, each
blend cansisting of 21/3 or 7 tanks. The compasitian of the
21 tanks arc pregsented in Table 6, The approaches adapied
by Marayan b al. 1o study the blending problem were ag fol-
lows:

= Heunsiic Approach.  In this case, the limiting consirant
was identified taking into cansideration all €213 tanks. The
blends werc then formulated such that each hlend has the
same limiting consteaint. If this was achisvable, then the frit
required would have been the same for the total blend, This
apnroach was found to he very difficull o mplament in prac-
tiee; rather, the hends were formulated so thar all blepds
were near the limiting valuc of the limiting constraing
(Warayan et al., 1956). The minimvm frit requircmant found

using (his approach was 11,736 kg of frit. .
= GAMS-Bazed MINLF Approech. The GAMS-based
MINLY approach waz very dependent on ihe inital condi-

lions for the caleulation, The best solution found using thiz
approach was 12341 kg of frit, The GAMS-based MINLP
madel failed 1o find the global aptimal solution duc 1o the
Renconyexities in the problem stepeture (Marayan o ai., 1993),

= Coupled Simulated Anneating - Nowlinear Programming
Approach (SA-NLF), Narayan ct al, (1996) proposed 2 twe-
Hage approach hased on simelated annealing and nonlincar
pragramming o determine the optimal blend configuralisn
lor this problem. The solution procedure for the delemmins.
tic: problem Is showa in Figore 10,

The objective was 1 select a combination of blends for
which the fotal amouat of frit added was minimum, The dis-
crete decision was related (o the distribution of the (anks
amang the thees blends, and was gencrated by the onter loop
of the twa-stage SA-NLP algorithm. The objective funetion
for the outer nop {(SA) was formulated as the minimization
of the total mass of the frit over a eombination of biends:

g
min 3, 7, (8A) (15)
i

=-]iw]
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Figure 1. Three-stage stochastic-anneating (STA-NLF)
algorithm,

in Figure 11, The solution procedure incorporates a sequence
of three Inaps nested within one another. The inner loop cor-
responds to the sampling loop, which generates the samples
for the mass fractions {or masscs) of the differcnt enmpo-
acats in ihe waste, evaluates the mean of the waste mass for
cach Lank, which is then propagated through the model tha
determings the pless-propecty constrainis, Tt must be noted
{hat since. unecriainties fn the glass-property models were in-
eorporated by redocing the [easible region, as mentioned
previously, a sampling «xerdse to seconnt for uncertaintios in
the property models &5 not necessary. The loop above the
sampling loop is the NLP optimization loop based on succos-
sive gquadratic programming, a widcly used technique far
solving large-seale, nonlinear cptimization problems, The al-
jeetive fuaction for the ML optimizer identifics the mini-
mum armount of [t for a gfwer blend configuration based an
the expected value of the masses of the components it the
waste blend;

min i m {NLP}, (23}
(=i _

subject to;

Equality constraints {Egs. 5, 17-18)
Individval compenent bournds (Eq. 19)
Crystallinity canstraints

Selubility constrgints {Eq. 203
Glass-property constraimts (Bg. 21),

where, ¥ is the composition of the ith-component in the
friv. based on the expected value of the wasic compasition,
and subjecl (o the unceriainties in 1the Phiysicab-property macd-
cis.
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Finally, the outer leop in the sequences consists of the
stochastie annealing algositham, which predicts the sample size
for the recursive sampling loop, and generates the blend con-
fipuratian such that the total amount of frit is minimum over
all the blends:

B ]
min ). Y. o {8TA), {24

Fali=I

where f, i the mass of the fth component in the frit haged
an the expected valucs for the waste composition and the
uncertainties.in the physical-property models for the jth waste
blend, and # and B denote the total number of COMQOReNts
and the given number {3) of bleads that needs to b formed,
respectively.

The NLP problen is solved based an the expected value of
the objective function, which is chtained from the tuns of the
madel for the different samplea at cach coafipuration pre-
dicked By the stochastic annsaling algorithm. The termination
of the entire pracedurc is govemed by the stochastic anneal-
ing algorithm and is dependent on the "reering™ criterion
mentioned [n the eacller paper (Chawdhod and Driwekar,
16545),

Resulty and divcugsion

In order to study the effect of the uneertaintiss in wasle
composition and in the glass-property models, tie stochastic
aplimization prablem of determining the eptimal blend con-
figuration was solved using twa sampling techniques; namely,
Latin hypercube and Hammersley scquence sampling. As
mentioned previowsly, the presones of uncertaintics ia the
wagle composition makes this prablem highly computation-
ally intensive. In [act, a fixed sample framework for slo-
chastic aptimization using 200 sarmplcs and Latin Hypercebe
sampling was unable to converge on an optimal salution in 5
days {total run time was cxpected to ba approximately 20
days}, on a DEC-ALPHA 400 machine! This demanded the
use. of the caupled STA-NLP approach to identify an opti-
mal salution in & reasonable computational time.

The optitial design confipnration identified by the coupled
STA-NLP approach uwslng Latin hypercuize sampling end
Hammersley sequence sampling are presented in Tables 8 and
8, respectively. The minfmmm quarttity of fril required using
both Latin hypercube and Hammersley sequence sampling is
11,307 kg, Nevertheless, the STA-NLP approach involying
Hammersley sequence sampling, for which the crror band-
width was characterized based on a scating relationship, was
found to be compuiationally less inteasive. For example, the
STA~NLF lechnique using Hammersley sequence sampling
And improved (oomolation of the penalty (s in the stachas.
tie anncaling algodthm, through aconrate error bandwidih
characterizations based am the sczling relationship, tnok 18
honrs, as opposed o 4 days weing Latin hypercobe sampling,

[Lis observed that the presencs of uncertaintics affeet the
optimal hlend configration, compared to a deterministic
analysis {Table 7), significandly. In faet, given the uncertain-
lies in the waste compasition and the plysical-proporty maol-

&ls, the aptimal design configuration ebtained by Marayan ct. -

al. (1996) for the doterminfstic case, estimates the (aial Frit
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Talle & Opiimai Wasie Klend Configuration in the Fresence
of Uncertaintics in ihe Waste Composition and Glass
Physieal Property Model. {Stochastic Case)*

[lezacls Tink CHsiribartion
Bleepel | TN 14,17, 14, 10 7
Biead 2 4,006,069 1, 200

Blem] 3 L2o3 i, 12,15
Muss in Frie f7 (g}
Compnneni i'ilu.r?d [ _D!:nd 2 Blend 3
mgw—'w—

Bzﬂn KA1 T26.7) {16954
Ma,0 51.624 £26.74 ATT2R
Li,0 57,744 756,86 46,428
Cny {1IKK) 25355 57003
MpD £.060) 00410 13,044
Fz,0, .0 0581 -£:808
#1553, .10 10, £.000
Zr0, {1.01rk) 0.0 0,000
Dithop i 21,784 0400

The 2ampling meereise Wiks perfitmed ualng Lajin lwpererbe sampling,

requirement 1o he TLO32 ka This strdy reemphipsizes the
need for characterizing uncertaintics in process madef for the
Purpose of determining the optimal desipn confruration.

Conclusions

Sampling acrogs a mmlisarigre probability distribudon i
an intagral part nf slochasic modeling and synthesis. An im.
Porlant aspect of probabilisiic modeling is the characierza-
tion of the HMpRg orror manifested throngh the error
bandwidty of any output probahitity funetion in a simulation

sampling, and is oy applicable to any ofer sampling tech.
nfgucs. On the ather hand, cllicient any mare unifom sam-
pling techniques exist, for which the arror bandwidihs have
not hean charactcrizad in the past, A methodology based og

Thble B, Oplima] Waste Blend Configuration in tha Prescnes
of Uneertaintles i the Wagte Composition and Glass

Physical Property Mordels {Stochasiic Cagn)®
Blenssz Tank Distribmtion
Blend i 13, 14,07, 18, i9, 7

4,5 6,4, 9, i, 20
L2300, I

Miiss in Frig £ flg)

Companeni Elcnd ! Blead 2 Blend 3
Si, 3568 54843 947,63
3,0,

Blend 7
Blend 3

Jg.tan 82R017 101557
N, € S0 #2530 427,37
L0 51817 73683 55054
Cri} 1781 25,270 21108
Mz 0.000 &0 14,208
Fe 0y, 0513 304 00.06H]
Al Oy 811 110204 (000
Zr0, (.0 0000 000
Other 0.0 21590 0.000

TII-'m smnling ckerclee s neefomed nsing Hammemlay sequesnce sam-
Pling,

1534 Augmat 1999

the sell-affinity and sealing properties of the ermre with [he
sample size has been rroposed, and was shown o chlimata
the eoror bandwidth mare acciralely for more aniform sam-
pling scheees. The methodology is robusy, and i reasonahly
independent of the funclional forms, prebabifity distributions
for the uneertain paramelers, and the pumber of wnecrtain
paremeters. This new approach wsing Hammersloy seqtionos
sampling was implemented in the stochastic anncaling frame-
work, resulfing in increaged computational savings, Tiis ap-
proach mate it possibie 1o sojve in a reasongble amount of
computational time, the real-worlg problem of obtaining up-
titial design configuration of radicactive waste Mends ta be
transformed into glass for long-term storage in a repository.,
The new capability for stochastic smthesis shows greag
Promise for the synthagis -ar largeaasie processes under uni-
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