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This paper presents a real world case study where a multiobjective programming (MOP)
framework under uncertainty is used for simultaneous integration of environmentally benign
solvent (EBS) selection and in-process solvent (IPS) recycling. At the EBS selection level within
this framework, the Hammersley stochastic annealing algorithm is applied to design candidate
EBSs under uncertainty. This algorithm can efficiently optimize stochastic combinatorial
optimization problems and generate a different set of candidate EBSs from that of the
deterministic EBS selection model. At the IPS recycling level, Aspen Plus with a nonlinear
programming technique is used to optimize the acetic acid recovery process. Then, these EBS
selection and IPS recycling models are integrated under the MOP framework. At the MOP level,
an efficient constraint MOP algorithm is employed to evenly approximate the Pareto solution
surface (i.e., tradeoff surface). Four objectivessacetic acid recovery, process flexibility, and two
environmental impacts based on LC50 and LD50sare evaluated. The resulting MOP framework
provides very distinctive chemical and process design alternatives (i.e., Pareto optimal solutions),
and uncertainties in this framework significantly affect the size and shape of the Pareto set.
This novel MOP framework can be applied to any large-scale stochastic mixed-integer nonlinear
optimization problems because this framework is computationally efficient even in the case of
combinatorial explosion and uncertainty inclusion.

1. Introduction

Separation processes not only are vital for isolating
and purifying valuable products but also are crucial for
removing toxic and hazardous substances from waste
streams emitted to the environment. Among the various
separation processes in chemical process industries,
distillation process is most commonly used. Figure 1
shows one example of separation processes using ex-
traction and distillation for acetic acid (HOAc) separa-
tion from water and its recycling.1 HOAc, an in-process
solvent (IPS), is a valuable chemical but also a pollutant
when released to the environment. HOAc can be directly
separated from water in a single distillation column;
however, this requires a very large number of equilib-
rium stages because of close boiling temperatures of
water and HOAc (100 °C vs 118 °C), resulting in high
capital and operating costs. Instead of using a single
distillation column, this separation, in practice, consists
of an extraction column followed by a distillation
column. An aqueous stream containing HOAc enters the
extraction column in which an environmentally benign
solvent (EBS) extracts HOAc from the aqueous mixture.
The extract is then supplied to the azeotropic distillation
column where the bottom product is pure HOAc and the
top product is a heterogeneous water-EBS azeotrope.
The pure HOAc product is recycled to upstream pro-
cesses, whereas the azeotropic mixture is condensed and
then decanted. The organic phase from the decanter is
recycled to the two columns, while the aqueous phase
goes to the wastewater treatment facility. A split

fraction, which is an important operating variable,
represents how much of the organic phase from the
decanter recycles to the distillation column. Because
EBS can be lost at the effluent streams, fresh makeup
EBS must be added continuously. This HOAc recovery
process is built in Aspen Plus, a steady-state simulator,
where ethyl acetate (EtOAc) is currently used as an
extracting solvent.

This process seems to be simple and easy to operate.
However, this process has several challenging problems.
It can be easily shown that this configuration has no
degrees of freedom for improving the process perfor-
mance and flexibility. This is mainly due to the azeo-
tropic constraint, the type of extracting solvent used,
and the steady-state nature of the process. Therefore,
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Figure 1. HOAc extraction process as a case study (from Eastman
Chemical Co.).
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variations in the feed condition can lead to severe
process instability that will cause great economic loss
and large environmental impacts (EI). A ternary phase
diagram of water-HOAc-EtOAc is shown in Figure 2,
in which the gray region is a two-phase region. A small
variation in the feed composition, which is not welcomed
but is common in real problems, can disturb the
performance and stability of the current process. The
composition in the extract stream, which becomes feed
to the distillation column, is affected through the
extraction mass balance line, and the bottom composi-
tion point (D) of the distillation column is severely
affected by this feed variation. Feed composition varia-
tion can also change the locus of distillation profiles,
resulting in completely unexpected products. If the
distillation profile follows the track A-C-D, this results
in a bottom product with low water purity, which may
be acceptable. However, if the profile follows the track
A-B-D, then the bottom product has a very low purity
in the extracting agent composition and is not accept-
able as a final product. Further, although the distillation
profiles move toward the vertex of HOAc in the ternary
diagram, the bottom composition point (D) may not be
close to the vertex of HOAc, resulting in low HOAc
purity (say, 80%), which is even worse.

Figure 3 shows a sensitivity analysis of the HOAc
recovery yield with respect to the bottom flow rate and
the split fraction when EtOAc is used as an extracting
agent. The dark regions (mostly on the left side)
represent low HOAc recovery yields, while the bright
regions represent high HOAc recovery yields. The
feasible region for high HOAc recovery is, unfortunately,
very limited and sporadic and is very sensitive to
operating and design conditions. This significantly
affects the convergence and size of the optimal solutions.
The feasible region is also affected by feed composition
variations and extracting agent types. For example,
process flexibility, defined as the number of feasible
designs to the total number of designs, of three extract-
ing agentssEtOAc, propyl acetate, and methyl propio-
natesat a particular operating condition is 50%, 70%,
and 53%, respectively. Thus, including the EBS selec-
tion along with IPS recycling is essential for improving
the stability and feasibility of this separation process.

The goals of this process design are to achieve a high
HOAc recovery yield, a high process flexibility, and low

EI. To evaluate the overall economic and environmental
performances of this process, a simultaneous integration
of EBS selection and IPS recycling should be considered.
EBS selection is an approach used to generate candidate
solvent molecules that have desirable physical, chemi-
cal, and environmental properties. Computer-aided mo-
lecular design (CAMD)2,3 is commonly used for EBS
selection. CAMD, based on the reverse use of group
contribution methods, can automatically generate prom-
ising solvent molecules from their fundamental building
blocks or groups.

In recent years, researchers have realized the impor-
tance of including chemical synthesis in process design.
Chemical synthesis in this paper refers to EBS selection,
while process design refers to IPS recycling process
design. Buxton et al.4 presented an integrated CAMD
model in absorption processes. They formulated a
mixed-integer nonlinear programming problem to mini-
mize the global environmental impact (or cost). Hostrup
et al.5 also presented a similar integrated framework
for coupled chemical and process synthesis. They pre-
sented a hybrid method of mathematical modeling with
heuristic approaches in the superstructure formulation
and solved the optimization problem to achieve mini-
mum cost or energy consumption while satisfying
environmental and process constraints.

However, this integration poses the significant prob-
lem of a combinatorial explosion of chemical and process
design alternatives, and uncertainties over the chemical
synthesis, process synthesis, and simulation stages add
additional complexities to this problem. In addition,
because the integrated framework needs to consider
multiple objectives such as profitability, energy con-
sumption, and EI, this coupled framework requires a
multiobjective programming (MOP) technique. Recently,
many researchers have focused on the applications of
MOP mainly to design for the environmental problems
in chemical engineering,6-8 and Bhaskar et al.9 pub-
lished a good review paper on this topic, including
various MOP solution techniques such as the constraint
method, goal programming, and genetic algorithm.

This paper presents a novel MOP framework for EBS
selection and IPS recycling under uncertainty. For the

Figure 2. Ternary phase diagram of H2O-HOAc-EtOAc (the
closed square is a feed point, and the closed circle is an azeotropic
point).

Figure 3. Sensitivity analysis of HOAc recovery rate.
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EBS selection level in the framework, we used the
Hammersley stochastic annealing (HSTA) algorithm,10

an efficient discrete optimization algorithm under un-
certainty. For the improvement of the MOP level, we
applied an efficient constraint MOP algorithm based on
the work of Fu and Diwekar.11 For the sampling level,
an efficient sampling technique, the Hammersley se-
quence sampling (HSS) technique, is applied to generate
uncertain samples. By using these efficient methods at
three levels, this novel MOP framework can evenly
approximate the Pareto optimal surface and reduce the
total optimization time. Thus, this proposed framework
presents a useful tool for any multiobjective optimiza-
tion problems due to features such as computational
efficiency and the systematic inclusion of uncertainty.

This paper has three main sections: the MOP frame-
work, EBS selection under uncertainty, and coupled
EBS selection and IPS recycling as an MOP problem.
The efficient MOP framework is explained in the next
section for the simultaneous integration of chemical
synthesis and process design. The section of EBS
selection under uncertainty describes EBS selection
criteria, a stochastic CAMD model, and distinctive
results. The MOP problem section formulates an MOP
problem under uncertainty and provides Pareto optimal
solutions at two different uncertainty cases. The last
section concludes this paper.

2. MOP Framework

The EBS selection and IPS recycling problem shown
in Figure 1 is a MOP problem, which involves multiple
objectives and tradeoffs between optimal solutions. The
objectives of this simultaneous integration are to maxi-
mize HOAc recovery, maximize process flexibility, mini-
mize environmental impact based on LC50 (lethal con-
centration at 50% mortality), and minimize environ-
mental impact based on LD50 (lethal dose at 50%
mortality). Process flexibility in this paper is defined
as the number of feasible solutions in the uncertain
region of feed variability. Because the flows of pollutants
should be minimized and the solvents should be safe,
the environmental impact defined in terms of LC50 and
LD50 is given as

The environmental impact based on fathead minnow
LC50 (mg/L) represents aquatic ecotoxicity, while the one
based on oral rat LD50 (mg/kg) represents rodent toxicity
(and possibly human toxicity).

MOP can be thought of as a set of methodologies for
generating a preferred solution or range of efficient
solutions to a decision problem12 and can provide the
least objective conflict. The preferred set is also known
as the nondominated set or the Pareto set, which is a
collection of alternatives that represent potential com-
promise solutions among the objectives. More specifi-
cally, it is a set of solutions that are superior to the rest
of the solutions in the objective space but are inferior
to other solutions in the space in one or more objec-
tives.13

To solve multiobjective optimization problems, it is
necessary to develop a complete multiobjective surface
so that the full range of alternatives would be known
and the tradeoffs among the objectives implied by each
alternative would be understood. This involves finding
the Pareto optimal solutionssnot a single solutionsfrom
a very large number of design alternatives, such that
no one solution dominates any of the others in the
population.

There are a large array of analytical techniques to
solve this MOP problem, and in this paper we apply an
improved constraint MOP method, which is a pure
algorithmic approach. This method can pick one of the
objectives to minimize arbitrarily while the remaining
others are turned into inequality constraints, with
parametric right-hand sides, Lk. The problem takes on
the following form:

where Zj is the chosen jth objective that we wish to
optimize and p is the total number of objective functions.
Solving repeatedly for different values of Lk leads to the
Pareto set, and this approach is equivalent to calculat-
ing an integral over the space of objectives.

Because of the large size of the Pareto set and the
iterative nature of this solution technique, a multiob-
jective optimization problem requires an efficient MOP
algorithm to obtain the Pareto set within a reasonable
time scale. Figure 4 represents the improved MOP
framework, which is a multiobjective stochastic anneal-
ing nonlinear programming framework. Detailed de-
scriptions and efficiency improvements of this frame-
work are explained in the following paragraph.

Level 1: Aspen Plus14 for IPS Recycling. Aspen
Plus, a steady-state chemical process simulator, is used
to build this case study.

EI ) ∑
i

stream

∑
j

pollutant Flowij

LC50,j (or LD50,j)
(1)

Figure 4. MOP framework for EBS selection and IPS recycling.

min Zj (2)

s.t. h(x,y) ) 0

g(x,y) e 0

Zk e Lk, k ) 1, ..., j - 1, j + 1, ..., p
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Level 2: HSS. This sampling loop is needed for
uncertainty analysis. The diverse nature of uncertainty,
such as estimation errors and process variations, can
be specified in terms of probability distributions and can
be performed by sampling the distributions in an
iterative manner. Of several possible sampling tech-
niques, the HSS technique is applied because it is
known that the HSS technique is at least 3-100 times
faster than other current state-of-the-art techniques
such as Latin hypercube sampling and Monte Carlo
sampling.15

Level 3: Nonlinear Programming Optimizer for
Continuous Optimization. The successive quadratic
programming (SQP) method is used because it requires
far fewer function and gradient evaluations than other
methods for constrained optimization and it does not
need feasible points at intermediate iterations. Both of
these properties make SQP one of the most promising
techniques for problems dealing with nonlinear con-
straint optimization, like process simulations.

Level 4: HSTA for EBS Design. This level provides
an efficient interaction between discrete optimization
methods and sampling techniques for uncertainty analy-
sis. Simulated annealing, developed by Kirkpatrick et
al.,16 is a good candidate for discrete optimization
problems because it can be applied to highly nonconvex
systems. Because of a combinatorial explosion of the
EBS selection problem, an efficient simulated annealing
is developed by utilizing the uniformity property of the
HSS technique in order to minimize the number of
combinations of discrete decisions. Based on this ef-
ficient simulated annealing algorithm and the stochastic
annealing algorithm,17,18 the HSTA algorithm10 is de-
veloped for efficient discrete optimization under uncer-
tainty. In this algorithm, the HSS technique is also
exploited to reduce the number of uncertain samples by
tightening their error bandwidths. It is observed that
the computational efficiency of the HSTA algorithm is
64% greater than that of the stochastic annealing
algorithm and 99% greater than that of a conventional
discrete optimization under uncertainty with a fixed
number of samples for uncertain variables.10 Hence, this
algorithm holds a great promise for complex large-scale
problems involving discrete decisions and uncertainties.

Level 5: MOP. MOP can lead to the Pareto set by
solving repeatedly different optimization problems with
new Lk values. The minimizing single objective optimi-
zation programming (MINSOOP) algorithm developed
by Fu and Diwekar11 also implements the HSS tech-
nique to generate combinations of the right-hand side
Lk, and the MINSOOP algorithm is found to be superior
to the existing algorithm in terms of efficiency and
accuracy. This uniformity property of the HSS technique
also contributes to accurate MOP solutions.

In summary, the computational efficiency of this MOP
framework is improved at various levels by using the
HSS, HSTA, and MINSOOP methods. All of the im-
provements exploit the uniformity and fast convergence
properties of the HSS technique. As the first step in this
framework, the HSTA algorithm in the MOP framework
is used for designing candidate EBSs for HOAc extrac-
tion under uncertainty in the next section. Then the
EBS selection is coupled with the IPS recycling problem
and optimized simultaneously.

3. EBS Selection under Uncertainty
This section describes how to design candidate EBSs

using the HSTA algorithm and presents important

stochastic CAMD results. Because HOAc in this case
study is a valuable solvent and can also be a pollutant
when released to the environment, it is desirable to
minimize the discharge of HOAc to the environment.
To recycle HOAc to the upstream processes from the
waste solvent streams, an extraction process is per-
formed as shown in Figure 1. For the extraction process,
one can use either high boiling point extracting
agents5,19,20 or low boiling point extracting agents,2
depending on the process and facility being considered.
Here, we focus on low boiling point extracting agents
for HOAc because the current extracting agent is
EtOAc, a low boiler.

3.1. Stochastic EBS Selection Model. To replace
the current EBS molecules or to design a new one, there
are several criteria to be considered, such as (a) distri-
bution coefficient (m), (b) solvent selectivity (â), (c)
solvent loss (SL), (d) physical properties, (e) toxicology
data such as LC50 and LD50, (f) environmental proper-
ties such as persistence, bioconcentration factor (BCF),
and reactivity, and (g) cost.20 For extraction processes,
the final selection of solvents will generally be domi-
nated by m and â. Detailed definitions of m, â, SL, and
boiling point are described in Appendix A, and the first
three solvent properties are functions of the infinite
dilution activity coefficient (γ∞) and molecular weight.

To predict m, â, and SL, the (original) UNIFAC
equation with recently revised parameters21 is used. The
interaction parameters (akl) between groups k and l in
the UNIFAC equation are obtained from regressions of
experimental data and are thus subject to uncertainty
due to experimental and regression errors. Furthermore,
the activity coefficient (γ) at a finite condition is, by
definition, extrapolated to an infinite dilution activity
coefficient (γ∞) in which large discrepancies between
experimental and calculated values may be observed.

It is not a good idea to define uncertainties in every
akl parameter because akl lies in the deepest part of the
nonlinear UNIFAC equation and there are too many akl
parameters. (The number of akl in the UNIFAC equa-
tion21 is 1803.) Instead, we defined an uncertainty factor
(UF), the ratio of the experimental γ∞ to the calculated
γ∞, to handle uncertainties in the EBS selection model.
We also divided γ∞ into three categories: organic-water,
water-organic, and organic-organic. The subscripts in
γij mean the infinite dilution activity coefficient of
component i in the component j phase. This division
considers the difference between properties of water and
those of organic chemicals. Table 1 summarizes uncer-
tainty distribution types, means, and variances of the
UF in these three categories and the number of data
sets22,23 used in this analysis. Figure 5 shows distribu-
tions of these UFs. We can see that there are large
uncertainties in γ∞ predictions, especially in the
γorganic,water

∞ prediction. Further, the mean values of UF
greater than 1 show that the UNIFAC equation under-
estimates the infinite dilution activity coefficients. These
uncertainty distributions are implemented in the com-
binatorial optimization problem under uncertainty,

Table 1. Uncertainty Analysis on the Estimation of
Infinite Dilution Activity Coefficient by UNIFAC22,23

category of γij
∞ distribution mean

standard
deviation

no. of data
sets used

organic-water log-normal 2.92 5.94 227
water-organic normal 1.08 0.37 41
organic-organic log-normal 1.14 1.30 161
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which is formulated as follows:

subject to

where ê is an uncertain parameter of the UF and is
imposed on the estimated γ∞. The constraint bounds of
â and SL are based on the values of the current
extracting agent, EtOAc.

Discrete decision variables are the number of groups
(N1) in a solvent molecule and the group index (N2

(i)) of
that molecule, and by combining these decision vari-
ables, we can build a unique solvent molecule. By
definition, solvent selection problems are to find the
optimal values of N1 and N2 that correspond to the best
solvent molecules. The set of groups (i.e., group indices)
in Table 2 is specially designed for linear or branched
hydrocarbons while aromatic, cyclic, and halogenated
compounds are eliminated because of environmental
concerns.

For molecular connectivity, a simple octet rule is
applied. If ndi represents the number of connecting

nodes of a group index i, then the octet rule is

In addition, the maximum number of ndi and the
number of functional groups in a molecule can be
restricted for faster and more practical molecular com-
binations.

Under given chemical connectivity constraints, there
are three processes to build a new group combination
from the current combination: addition, contraction,
and random bump. In the addition process (N1 ) N1 +
1), the number of groups (N1) in a solvent molecule is
increased, and a random group index is assigned to that
increased group. In the contraction process (N1 ) N1 -
1), one group is randomly deleted. In the random bump
process (N1 ) N1), the number of groups in a molecule
is unchanged. Instead, an arbitrarily selected group
index (N2

(i)) is randomly bumped up or down. The
magnitude of these bumps is also random. The prob-
abilities for these three processes are specified at 30%,
30%, and 40%, respectively. High random bump prob-
ability is assigned to guarantee the sampling of all of
the group indexes.

3.2. EBS Selection Results. Because of the large
combinatorial space of groups and large UFs in the
infinite dilution activity coefficients, this problem rep-
resents a complex combinatorial optimization problem
under uncertainty and a challenge to existing optimiza-
tion techniques. This problem can be efficiently solved
by the HSTA algorithm, the second level in the MOP
framework (see Figure 3). For details, refer to the paper
by the authors.10

Table 3 shows the optimal candidate EBSs from the
deterministic and stochastic EBS selection models.
From 40 candidate solvents generated, the first 15
solvents are ranked with respect to the order of m, and
only eight solvents appear in both cases (see boldfaced
solvents in this table). This implies that the determin-
istic case does not generate several or many promising
solvents, which appeared in the stochastic case. Note
that the current extracting solvent, EtOAc, is not listed
in the top 15 solvents in both cases because it has a
small m. At the deterministic case, EtOAc is outside the
top 40 candidate solvents and at the stochastic case
EtOAc is ranked as the 26th extracting agent (after
rerunning of the deterministic model with 50 candidate
solvents, it is listed at 46th with an m of 0.3156). As
expected, distribution coefficients for the stochastic case
are greater than those of the deterministic case because
of the positively skewed UFs, mainly that of
γorganic,water

∞ .
The probability distribution function (pdf) analysis

shows that the pdf of the deterministic case looks like
a narrow log-normal distribution with a mean of 0.53
and a small variance, while the one of the stochastic

Figure 5. Probability density functions of UFs for the organic-
water, water-organic, and organic-organic families.

min -
1

Nsamp
∑
j)1

Nsamp[êj
1 γB,A

∞

êj
3 γB,S

∞ ]MWA

MWS

(3)

â )
1

Nsamp
∑
j)1

Nsamp[êj
2 γA,S

∞

êj
3 γB,S

∞ ]MWA

MWS

g 7.0

SL )
1

Nsamp
∑
j)1

Nsamp[ 1

êj
1 γS,A

∞ ]MWA

MWS

e 0.058

47 e TBP (°C) e 118

2 e N1 e 10

1 e N2
(i) e 24, ∀ i ∈ N1

ê1 ∼ log N(2.92, 5.94)

ê2 ∼ N(1.08, 0.37)

ê3 ∼ log N(1.42, 1.14)

Table 2. Set of Discrete Decision Variables for UNIFAC
Group Contribution Method

i N2
(i) i N2

(i) i N2
(i) i N2

(i)

1 CH3- 7 CH2dC< 13 CH3CO- 19 CH3O-
2 -CH2- 8 -CHdC< 14 -CH2CO- 20 -CH2O-
3 -CH< 9 >CdC< 15 -CHO 21 >CH-O-
4 >C< 10 -OH 16 CH3COO- 22 -COOH
5 CH2dCH- 11 CH3OH 17 -CH2COO- 23 HCOOH
6 -CHdCH- 12 H2O 18 HCOO- 24 -COO-

∑
i

N1

ndi ) 2(N1 - 1) (4)
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case has a wide normal distribution with a mean of 1.34
because of the positively skewed UFs. We can also find
different types of solvent molecules in the stochastic
case. Although most of the candidate solvents are
formates, esters, and ethers, the stochastic case can also
generate aldehydes, alkanes, and alkenes. New types
of solvent molecules mean that the stochastic model can
cover a wider range of combinatorial space of discrete
decision variables (i.e., N2).

The value of stochastic solution (VSS)24 can be used
to quantify the effects of uncertainty and represents the
loss by not considering the uncertainty effects. VSS is
the difference between taking the average value of the
uncertain variable as the solution as compared to using
stochastic analysis and optimizing the expected value.
Because the UFs, represented by ê over γ∞, are imple-
mented in the objective function, we can assume the
expected value of the stochastic problem with the
average ê to be 2.06 times the deterministic m, as shown
in Table 3. For the first set of solvent molecules in this
table, the VSS of this case study is estimated as 1.16,
and the stochastic optimization therefore increases the
performance (distribution coefficient in this study) by
65%. Other sets of solvent molecules have similar VSS
values. Thus, it makes sense to consider the stochastic
solution for real implementations. Here, the solvents are
used in the coupled EBS selection and IPS recycling
framework described earlier.

4. Integrated EBS Selection and IPS Recycling
Problem: An MOP Problem

4.1. Problem Formulation. The objectives of this
MOP problem under uncertainty are to maximize HOAc
recovery (Z1), minimize EIs based on LC50 (Z2) and
based on LD50 (Z3) (it should be remembered that there
are numbers of other EIs like global warming, ozone
depletion, photochemical oxidant formation, etc.; how-
ever, because we are looking for new solvents built from
groups, we need group contribution methods for predict-
ing other EIs. Unfortunately, in most cases group
contribution methods for these impacts are not avail-
able. This is the reason we consider LC50 and LD50, in
which group contribution methods are available), and
maximize the process flexibility (Z4). The mathematical
formulation of this MOP problem for the EBS selection

and IPS recycling case study is

subject to

where x and y are continuous and discrete decision
variables. The continuous decision variable vector x is
[split fraction, distillation bottom rate, EBS makeup
flow rate, heat duty]T, and the discrete decision design
vector y is [solvent type, distillation feed point, number
of equilibrium stages]T. Although the current HSTA
algorithm generated candidate solvents, as shown in
Table 3, a small number of candidate EBSs are present
in the Aspen Plus databank. By comparing the candi-
date EBSs with the Aspen Plus databank and by
checking the presence of a binary azeotrope between
water and EBS, we can find that seven candidate EBSs
are in the databank for this process. Existence of a
binary heterogeneous azeotrope between water and EBS
is critical because the current process (see Figure 1) is
based on the heterogeneous azeotropic distillation whose
top azeotropic stream is separated in the decanter. The
candidate solvents are (1) methyl propyl ketone, (2)
methyl isopropyl ketone, (3) diethyl ketone, (4) EtOAc,
(5) methyl propionate, (6) isopropyl acetate, and (7)
propyl acetate, and their m, â, SL, and boiling points
are summarized in Table 4. Now, the HSTA algorithm
is modified to generate only these solvents in order to

Table 3. Top 15 Candidate Solvents for the Deterministic and Stochastic Cases

deterministic case stochastic case

no. optimal solvents m optimal solvents m

1 2CH3, CH2, CH, HCOO 0.87 2CH3, CH2, CH, HCOO 2.95
2 CH3, 3CH2, HCOO 0.87 CH3, CH2, CHdCH, HCOO 2.60
3 CH3, CH2, CHdCH, HCOO 0.76 CH3, CH2, CH2dC, HCOO 2.55
4 CH3, 3CH2, CH2dC, HCOO 0.75 CH3, CH2dCH, 2CH2O 2.27
5 2CH2, CH2dCH, HCOO 0.72 CH3, CH2dCH, CH3O, CH-O 2.27
6 CH3, CH, CH2dCH, HCOO 0.72 CH3, CH, CH2dCH, CH3O, CH2O 2.15
7 CH3, CH2dCH, CH3O, CH-O 0.66 CH3, CH2dC, CH3O 2.09
8 CH3, CH, CH2dCH, CH2O, CH3O 0.63 CH3, CHdCH, CH3CO 2.08
9 2CH2, CH2dCH, CH2O, CH3O 0.63 CH3, CH2, CH2dC, CH3O, CH2O 2.04

10 CH3, CH2dC, CH3CO 0.61 CH3, CH2, CH3CO 1.96
11 CH3, CHdCH, CH3CO 0.61 CH3, CH2, CH2dC, CH3O 1.84
12 CH2, CH2dCH, CH3CO 0.60 2CH2, CH2dCH, CH2O, CH3O 1.55
13 CH3, CH, CH2dCH, CH3O 0.58 CH3, CHdCH, CHO 1.51
14 2CH2, CH2dCH, CH3O 0.58 CH3, CH2, CH, CH2dCH, CH3O 1.49
15 CH3, 2CH2, CH3, CO 0.57 2CH3, CH, CH2dC, CH3O 1.41

min Z1 ) - HOAc in product
HOAc in feed

) f(x,y) (5)

1 e y1 e 7

3 e y2 e 9

0.5 e x1 e 0.95

20 e x2 e 35

Z2 ) EI ) ∑Fsolvent,out

LC50,solvent
+ ∑FHOAc,waste

LC50,HOAc
e L2

Z3 ) EI ) ∑Fsolvent,out

LD50,solvent
+ ∑FHOAc,waste

LD50,HOAc
e L3

Z4 ) - feasible runs
total runs

e L4

yi ) integer
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eliminate redundant Aspen Plus simulations with a
nondatabank component.

Discrete decisions include the total number of stages
of the extractor and the distillation column (20 and 25,
respectively), solvent type (y1), and the feed point to the
distillation column (y2). Continuous decisions include
the distillation bottom flow, split ratio (i.e., EBS recycle
ratio), EBS makeup flow rate, and heat duties of the
distillation column. The feed rate is assumed to be 100
kmol/h with the molar feed composition of 0.7/0.3 in
water-HOAc, and process uncertainty is imposed on the
feed flow rates.

LC50 and LD50 data (in Table 5) are needed to
evaluate the EIs of the HOAc recovery process. Most of
the LC50 and LD50 data are taken from these refer-
ences,25,26 while those whose values cannot be found
were estimated using a new group contribution method.
A detailed description of this method is given in Ap-
pendix B.

There is another important factor that should be
considered in EBS selection and IPS recycling. In
industrial practice, heat duty is critical in deciding
alternatives for continuous distillation. Thus, before the
MOP problem is solved, the proposed EBSs are also
checked through the reboiler heat duty comparison in
order to eliminate candidate EBSs that require high
heat duty. From Figure 6, it can be seen that all
extracting entrainers do not have large positive devia-
tions from the heat duty of EtOAc, the current extract-
ing agent, and the proposed EBSs can hence be used in
the MOP problem.

4.2. Pareto Optimal Solution. The first step in
solving MOP problems is to obtain a payoff table, which
shows a potential range of values of each objective. A
payoff table contains individual objective values (Zk

*)
for single optimization problems (k) and also provides
potential ranges of the objectives on the Pareto surface
(i.e., ZL to ZU). The minimum value (ZL) of the Pareto
surface is equal to the individual optimal value (Zk

*),
while the maximum value (ZU) of the Pareto surface is
the maximum value of that objective found when
minimizing the other objectives individually. In this
way, an approximated range of the right-hand side Lk
in the Pareto surface is determined. Table 6 shows a
payoff table for optimization under uncertainty, in
which the variation in the feed flow rate is (5% of the
nominal feed flow rate and is normally distributed. To

clarify, the flow rate of each feed component is inde-
pendently varied so that the total flow rate and its
composition are altered.

Figure 7 shows the Pareto optimal solution of the
MOP framework for the EBS selection and IPS recycling
problem. Because of a highly discretized solution surface
and large infeasible regions (in terms of yield and
feasibility), only four Pareto solutions from 30 sets of
optimization problems can be obtained. The first three
EBSs in Table 4 are not in the Pareto optimal solutions
because the azeotropic boiling points of these molecules
with water are relatively high. EtOAc (4), which is the
current extracting agent, has advantages in terms of
two objectives: HOAc recovery (Z1) and process flex-
ibility (Z4). High HOAc recovery can be predicted
because the distribution coefficient of EtOAc is the

Table 4. Selection Criteria for Candidate EBSsa

rank
EBS m â SL

TBP
(°C) I II

methyl propyl ketone 0.5740 30.86 0.053 102.3 15 10
methyl isopropyl ketone 0.5738 30.88 0.053 94.4 16
diethyl ketone 0.5084 41.68 0.029 102.0 22
ethyl acetate 0.3156 14.62 0.056 77.1 27
methyl propionate 0.2784 17.52 0.039 79.5 32
isopropyl acetate 0.2627 16.66 0.023 88.5 38
propyl acetate 0.2627 16.60 0.023 101.5 39

a Ranks I and II are obtained at the deterministic and stochastic
EBS selection models, respectively.

Table 5. LC50 and LD50 Data of Seven Candidate EBSs and HOAc

methyl propyl
ketone

methyl isopropyl
ketone

diethyl
ketone

ethyl
acetate

methyl
propionate

isopropyl
acetate

propyl
acetate

acetic
acid

LC50 [mg/L] 1532 861 1540 230 922a 94a 60 88
LD50 [mg/kg] 3730 148 2140 5620 5000 3000 9370 3310
a Values estimated by the equation in Appendix B.

Figure 6. Reboiler and condenser heat duties of the candidate
extracting agents.

Figure 7. Pareto optimal solutions at 5% feed flow variations
(numbers in the parentheses represent EBS type and distillation
feed point).
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highest among the EBSs present in the Pareto optimal
solutions. Hence, the popular use of EtOAc can be
understood from these two objectives. For the EI based
on LC50 (Z2), methyl propionate (5) is the best solvent
for this integrated problem. This is mainly due to the
relatively high LC50 value and the lowest mole fraction
in the effluent streams (i.e., the raffinate from the
extractor and the aqueous stream from the decanter).
The mole fraction of methyl propionate is O(-3), while
those of other EBSs are O(-2). For the EI based on LD50
(Z3), isopropyl acetate (6) is the best choice even though
it has the smallest LD50 value among LD50 solvents. It
is found that isopropyl acetate has the lowest fresh
solvent makeup flow rate (e.g., ∼ 0.36 kmol/h vs 1.27
kmol/h of EtOAc), and this is the main reason for the
lowest Z3 value. The process flexibility objective is highly
dependent on the distillation feed point as well as EBS
molecules. The second and third bars of process flex-
ibility in Figure 7 show flexibilities when using EtOAc
as an extracting agent. It is seen that a small change
of the distillation feed point can significantly change the
process flexibility. This phenomenon is also observed at
different ranges of feed flow variations, which is de-
scribed in the next paragraph.

If the feed flow variation is increased to 10%, then
significantly different results in the Pareto optimal
solution set can be obtained. Table 7 shows the MOP
results at different feed flow variations and uncertainty
distributions. The most distinctive feature of the result
is that EtOAc is no longer in the Pareto optimal solution
set. Only isopropyl acetate and methyl propionate are
in the solution set. The second feature from the results
is that the number of Pareto solutions is decreased. This
means that decision makers (e.g., process engineers)
have fewer choices. This reduced Pareto optimal set is
mainly due to the large uncertainties in the feed flow
rates, which can restrict the feasible region by increas-
ing the ranges of Lk on the Pareto surface.

From this case study, we can see that the MOP
framework for the simultaneous integration of EBS
selection and IPS recycling resulted in better economic
performance and environmental quality by improving
EI (i.e., reducing solvent loss and using a safer solvent)
and HOAc recovery without changing the process flow-
sheet structure. Thus, the proposed framework can
provide different chemical and design alternatives to
decision makers, and uncertainties in the framework
can play a significant role in the early design and
synthesis stages.

5. Conclusions

A simultaneous integration of EBS selection and IPS
recycling is presented in terms of a multiobjective
optimization framework for superior economic and
environmental performances. In the EBS selection level,
the HSTA algorithm is developed for designing solvent
molecules under uncertainty. This algorithm can ef-
ficiently solve a combinatorial optimization problem
under uncertainty and provide a different set of candi-
date solvents as compared to that of the deterministic
solvent selection model. In the IPS recycling model, the
HOAc recovery process is modeled in Aspen Plus with
a nonlinear programming optimizer. Finally, the EBS
selection and IPS recycling models are integrated under
the MOP framework where an efficiently improved MOP
algorithm is applied. The MOP framework can provide
very distinctive chemical and design alternatives (i.e.,
Pareto set), and variations in the feed flow rate can
greatly affect the size and shape of the Pareto surface.
At small uncertainties in feed flow and composition,
EtOAc, isopropyl acetate, and methyl propionate with
optimal design and operating conditions can form the
Pareto optimal solution set, but at large uncertainties,
only isopropyl acetate and methyl propionate can form
the Pareto set with fewer choices to decision makers.
From this study, we can see the importance of simul-
taneous integration of EBS selection and IPS recycling
under the multiobjective optimization framework, and
this novel MOP framework can be applied to other large-
scale stochastic mixed-integer nonlinear optimization
problems because the two algorithms are computation-
ally efficient even in the case of combinatorial explosion
and uncertainty inclusion.
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Appendix A: EBS Selection Criteria

The distribution coefficient (m), a measure of the
solvent capacity, is the most important factor and
represents the solute distribution between being in the
solvent and in the raffinate phases, as shown in the
following equation:

where γ∞ is the infinite dilution activity coefficient and
MW is molecular weight. The symbols A, B, and S
represent the raffinate, solute, and solvent phases,
respectively. A high value of m reduces the size of the
extracting equipment and the amount of recycling
solvent.

Solvent selectivity (â), equivalent to the relative
volatility in the distillation process, is the ratio between
the distribution coefficients of solute and raffinate and
is defined by

Table 6. Payoff Table at 5% Feed Flow Variation

k objective Zk
* ZL ZU

1 HOAc recovery -0.9869
2 EI based on LC50 0.9078 0.9078 1.4470
3 EI based on LD50 0.2500 0.2500 0.3840
4 flexibility -0.8000 -0.8000 -0.4667

Table 7. Pareto Optimal Solutions at Different Feed
Flow Variations and Uncertainty Distributions

flow
variation normal distribution uniform distribution

5% 4 Pareto solutions 6 Pareto solutions
2 ethyl acetates 2 ethyl acetates
isopropyl acetate 2 isopropyl acetates
methyl propionate 2 methyl propionates

10% 2 Pareto solutions 4 Pareto solutions
2 isopropyl acetates 2 isopropyl acetates

2 methyl propionates

m )
xB,S

xB,A

MWA

MWS
=

γB,A
∞

γB,S
∞

MWA

MWS

â )
mB

mA
=

γA,S
∞

γB,S
∞

MWB

MWA
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Solvent selectivity estimates the ability of the solvent
to selectively dissolve a solute, and hence a high â value
reduces the cost of solute recovery.

Another important criterion is solvent loss (SL), which
is expressed by the following equation:

Low SL means a high selectivity toward the solute and
determines the immiscibility between solvent and raf-
finate. Among physical properties, the boiling point is
a very important criterion too. This enables the use of
similar energy consumption in the process and hence
similar equipment size. Joback’s method27 is used to
estimate the boiling points of candidate solvents:

where ta and tb are temperature parameters. Two
discrete decision variables, N1 and N2, represent the
number of groups and group indices of a solvent
molecule, respectively.

Appendix B: Prediction of LC50

For solvents without experimental LC50 values, we
developed a group contribution method based on the
same UNIFAC groups and log Kow (octanol-water
partition coefficient) because the prediction accuracies
of the existing quantitative structure-activity relation-
ship models and other group contribution methods28 are
not highly accurate and/or require too many parameters
to estimate the values.

Fathead minnow LC50 in mol/L for acyclic esters,
ethers, ketones, aldehydes, and alcohols can be esti-
mated by the following equation:

where a and bi are parameters for log Kow and group
index i, respectively, and ni is the number of occurrences
of the group index i. Table 8 summarizes the parameters
a and bi, which are obtained from the regression of 46
experimental data. Strong contributions to aquatic
toxicity come from terminal alkene, aldehyde, and
acetate groups. Gao et al.28 also found that aldehyde
groups have the strongest toxicity contribution among
the groups.

Table 9 shows prediction errors of several selected
solvents. The average error in log LC50 prediction is
6.5%, and the maximum error is 39%. High prediction
errors are mainly observed at high molecular weight
molecules. This is one of the difficulties in group
contribution methods for environmental properties.

For more accurate prediction of environmental prop-
erties, error analysis is required and mandates consid-
eration on uncertainty in environmental property pre-
diction as we have done in section 3, and this is one of
the future works.
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(19) Pretel, E. J.; López, P. A.; Bottini, S. B.; Brignole, E. A.
Computer-Aided Molecular Design of Solvents for Separation
processes. AIChE J. 1994, 40, 1349.

(20) Kim, K.-J.; Diwekar, U. M. Efficient Combinatorial Opti-
mization Under UncertaintysPart II. Application to Stochastic
Solvent Selection. Ind. Eng. Chem. Res. 2001, accepted for
publication.

(21) Hansen, H. K.; Rasmussen, P.; Fredenslund, A.; Schiller,
M.; Gmehling, J. Vapor-Liquid Equilibria by UNIFAC Group
Contribution. 5. Revision and Extension. Ind. Eng. Chem. Res.
1991, 30, 2352.

(22) Tiegs, D.; Gmehling, J.; Medina, A.; Soares, M.; Bastos,
J.; Alessi, P.; Kikic, I. Activity Coefficients of Infinite Dilutions;
DECHEMA: Frankfurt, Germany, 1986; Vol. 6, Part 1.

(23) Gmehling, J.; Menke, J.; Schiller, M. Activity Coefficients
of Infinite Dilutions; DECHEMA: Frankfurt, Germany, 1994; Vol.
6, Part 3.

(24) Diwekar, U. M. Introduction to Applied Optimization;
Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001;
to be published.

(25) Agrawal, M. R.; Winder, C. Frequency and Occurrence of
LD50 Values for Materials in the Workplace. J. Appl. Toxicol.
1996, 16, 407.

(26) Russom, C. L.; Bradbury, S. P.; Broderius, S. J.; Hammer-
meister, D. E.; Drummond, R. A. Predicting Modes of Action from
Chemical Structure: Acute Toxicity in the Fathead Minnow
(Pimephales promelas). Environ. Toxicol. Chem. 1997, 16, 948.

(27) Joback, K. G.; Reid, R. C. Estimation of Pure-Component
Properties from Group-Contributions. Chem. Eng. Commun. 1987,
57, 233.

(28) Gao, C.; Govind, R.; Tabak, H. H. Application of the Group
Contribution Method for Predicting the Toxicity of Organic
Chemicals. Environ. Toxicol. Chem. 1992, 11, 631.

Received for review September 17, 2001
Revised manuscript received December 13, 2001

Accepted December 14, 2001

IE010777G

4488 Ind. Eng. Chem. Res., Vol. 41, No. 18, 2002


